
Kurt Jacobs
Centre for Quantum Computer Technology, Centre for Quantum Dynamics, School of Science,

Griffith University, Nathan 4111, Australia

Introduction to Quantum Error Correction
and Fault Tolerance

The text for this tutorial is chapter 10 of:
Nielsen and Chuang, (CUP, Cambridge, 2000)

Workshop on Quantum Information, NTU, Taipei, Dec 14-15, 2004

Note: The workshop presentation included slides 1-15, 19-24 and 26

Outline

1. Classical error correction
2. An example of quantum error correction
3. Shor’s Nine qubit code
4. Hamming Bound - other codes
5. General conditions for a quantum error correcting code
6. Fault tolerance
7. Recent developments

Classical Error Correction
While classical computers do not need error correction, as their components
are highly reliable. However, classical information storage devices
(e.g. CD’s), and transmission devices (e.g. modems), use error correction to
protect against noise.

A simple error correction procedure involves using 3 bits to encode the value
of a single bit:

1 ---> 111
0 ---> 000

If there is an error in one of the qubits, then the data is completely
undamaged, because we can still tell what the value of original bit is.
(Note that this is possible because the 3 states which result when there is an
error on one of the bits for the initial state 1 (which are 110,101,011) are
different from those that result when the initial state is 0 (which are
001,010,100)

So, what is the probability that we will have an error which does corrupt the
data, when we encode it in this way? To corrupt the data there must be two or
more errors in the qubits. If the probability of the error in a single bit is p, and
we assume that the errors in different bits are independent, then the
probability of having an error in more than one qubit is 3p2 + p3.

So the error correction procedure reduces the error probability from
p to 3p2 + p3.

--- If p is much less than 1, then 3p2 + p3 is much less than p, and this error
 correction method will give a great advantage.

--- If p is close to 1, then we can use the method repeatedly, and reduce the
 error as small as desired. This is called concatenation.

Note that it is crucial that errors on different bits are independent, and is the
fundamental reason that the procedure works.

So is it possible to do the same thing for quantum systems. That is, to
obtain a procedure which involves encoding the state of a quantum system
in a number of such system, such that, when an error occurs in a single
one of these systems, the state of the original system can be perfectly
recovered?

There are a number of reason why one might think that this is not
possible:

1. No cloning

2. Quantum errors are continuous

3. Measurement on a system in an unknown state alters the state.

However, we will find that despite these things, quantum error correction
is possible.

Quantum Error Correction?

To successfully protect a bit we have to be able to recover the initial state,
which, for a classical bit is one of just two possibilities. The state of a
quantum bit however is a two-dimension continuum:

 ψ〉 = a0〉 + b1〉

Now, say the error which can happen to a single bit is an operator which
flips the state when written in the basis {0〉, 1〉}. We will encode the
state of the qubit in three qubits as

 C〉 = a0〉0〉0〉 + b1〉1〉1〉

Note that all the possible states C〉 lie in a 2-dimensional subspace of the
3-qubit system. This is called the code space, or simply the code, since
choosing this space completely specifies the code. Also we will call the
encoded qubit the logical qubit, and the others the physical qubits.

A simple example of Quantum Error Correction

Now imagine that an error occurs in one of the three qubits. The three
possible states that result are:

 C1〉 = a1〉0〉0〉 + b0〉1〉1〉

 C2〉 = a0〉1〉0〉 + b1〉0〉1〉

 C3〉 = a0〉0〉1〉 + b1〉1〉0〉

Now we see that each of these states lives in a different space. This is
essentially a result of the properties of the classical code {000,111}. As a
result of this, we can perform a measurement which projects the system
onto one of these spaces. If the result of the measurement is the space in
which C3〉 lives, then the result of the measurement is just C3〉

 C3〉 = a0〉0〉1〉 + b1〉1〉0〉

Now we can correct the error by flipping the last bit! And we can just as
easily correct the error for the other two subspaces.

Features:

 -- Measurement tells us the final space
 -- knowing this we can correct by applying a unitary
 -- If in the original code space, no correction
 -- Also the measurement actually tells us which qubit the error was in.
 -- The important point is that for each space,
 the error maps are unitary, and independent of the initial state.

Like correcting a classical probability density
In hindsight, this process is not so surprising. This is because a classical
error correction procedure can clearly correct for any probability
distribution over the initial state of the bit. This is because if both states 0
and 1 are correctly preserved, then an initial probability distribution over
those states is also preserved. Correcting the quantum state in the above
example is similar to correcting a classical distribution.

Note that the error correction involves an operation which is conditional
upon the subspace, and this does not actually require a measurement, but
can be done with a suitable unitary operator.

We have seen that neither the impossibility of cloning nor the fact that
measurements on unknown states cause disturbance impose a fundamental
barrier to quantum error correction. But what about the fact that there are
a continuum of possible errors.

Lets say that the coding system has N qubits:

-- Write the Pauli operators for the nth qubit as Xn, Yn,Zn .
-- Assume that we have a code which can correct any single error
 caused by Xn, Yn or Zn for any n.

What happens for an arbitrary error operator En acting on qubit n?

-- Important fact: any operator on a single qubit is a linear combination
 of the Pauli operators X, Y, Z.

A Continuum of Errors

Thus an arbitrary operator on the nth qubit is

 En = e0n In + e1n Xn + e2n Yn + e3n Zn ,

where the subscript n denotes the qubit. So what happens now when we
have an error due to one of the operators En (selected at random with
probability pn) ? Well, after the action of E we can make a measurement
which projects the system onto one of the mutually orthogonal spaces to
which the system is mapped by the actions of In (no error), Xn, Yn and Zn.
Let us say that the result of the measurement is a projection onto the space
resulting from the action of X1. If we denote the projection operator onto
this space by PX1 , and the initial encoded state as ρ then the result is

 Σn pn PX1 En ρ En
† PX1

 = Σn pn PX1 (e0nIn + e1nXn + e2nYn + e3nZn) ρ (e0nIn + e1nXn + e2nYn + e3nZn)†PX1

 = p1 |e1|2 X1 ρ X1 hence the result is only an X error one qubit 1.

Hence, because the actions of all the operators In, Xn, Yn and Zn take the
code space to mutually orthogonal spaces, once we make a measurement
which projects the system onto one of these spaces the result is that only
one of this discrete set of errors will have affected the system (so long as an
arbitrary error En has occurred on just one of the qubits).

-- A continuum of errors is not a barrier to performing QEC.
-- A single code that corrects X, Y and Z will correct all errors.
-- So is such a code possible?

-- The 3-qubit code that corrects for X can easily be modified to correct
 for Y or Z, just by changing the basis in which the code is written.

Shor was the first to construct a code that could do all three [Shor, PRA 52,
2493 (1995)]. He concatenated the code which corrects X with the same
code transformed to the Z basis so that it corrects Z. (That is, to first encode
the single qubit using three qubits with a code that corrects Z (say) and then
to encode each of these three qubits using three qubits (for a total of nine
qubits) with a code that corrects X.)

So to obtain Shor’s code we first encode the logical qubit using the code
which protects against Z, otherwise known as a phase-flip error. That is

 ψ〉 = a0〉 + b1〉 --> Cy〉 = a+〉+〉+〉 + b-〉-〉-〉

where +〉 ∝ 0〉 + 1〉 and -〉 ∝ 0〉 - 1〉 are the eigenstates of Z (we
don’t worry about normalization). Then, we encode each of the three
coding states using the code which corrects X errors (otherwise known as
bit-flip errors). Then we have

Cxy〉 ∝ a(000〉 + 111〉) (000〉 + 111〉) (000〉 + 111〉) +

 b(000〉 - 111〉) (000〉 - 111〉) (000〉 - 111〉)

Now, to see that this corrects for both bit-flip and phase-flip errors, we just
need to understand why the action of both X and Z on any bit

Shor’s Nine Qubit Code

take the system to mutually orthogonal spaces.

-- Each of the X operations take the system to orthogonal spaces -
 to see this look at the action on each of the three-qubit blocks.

-- A phase-flip maps 0〉 to 0〉 and 1〉 to - 1〉. Since it keeps us within the
space which is made up of products of 000〉 and 111〉, all the resulting
states are orthogonal to those produced by X. Also, we note that Z errors
on different three-qubit blocks map to mutually orthogonal spaces.

-- However, Z errors on different qubits within a block map to the same
space. But more than this, they map in an identical way - that is, they
produce the same final state. Hence, we can still correct for each of them,
once we know the final space, since the map required to correct the qubit
is the same for all of them!

Here is the code again for reference:

Cxy〉 ∝ a(000〉 + 111〉) (000〉 + 111〉) (000〉 + 111〉) +

 b(000〉 - 111〉) (000〉 - 111〉) (000〉 - 111〉)

Correcting Y errors
Now, what about correcting Y errors? Well, the first thing to note is that
Y ∝ XZ. So we can correct a Y error if we can correct the situation when
both an X error and a Z error happen simultaneously. Inspection of the
action of both of these together shows that this takes us yet again to a
whole different set of orthogonal spaces where necessary, hence Y can be
corrected too, and hence all errors on a single qubit can be corrected!

Definition of error syndrome
To sum up, we project the system onto one of the possible subspaces, and
this tells us how the system has been affected by the error. The result of
the measurement (i.e. the subspace) is called the error syndrome. Once we
know the error syndrome, we can correct the error.

A degenerate code
Now, the Shoe code is an example of a degenerate quantum code. That is,
a code in which some of the errors map to the same space, which is
possible because the action of these different errors on the code state are
identical. This is not something that occurs in classical codes.

Shor’s code is not the smallest code which can be used to completely
protect a qubit against single-qubit errors. If we assume that our codes are
non-degenerate, then it is easy to obtain a lower bound of the number of
qubits required for a code by counting the number of orthogonal 2D
subspaces which are required. To correct for I (no error), and Xn, Yn and Zn
on each qubit need 1 + 3n two dimensional subspaces. Now a code which
has n qubits has a dimension of 2n, so we must have 2n ≥ 2(3n+1) . This is
only satisfied for n ≥ 5. This is called the quantum Hamming but is not a
strict lower bound, because quantum codes can be degenerate. However, it
is possible to derive a more sophisticated bound, the quantum Singleton
bound which is strict, and confirms that n ≥ 5.

There are a number of methods that have been developed to construct
quantum codes. There are the Calderbank-Shor-Steane codes, which
employ classical linear coding theory, and the stabilizer codes, developed
by Gottesman. There is a stabilizer code which will correct single qubit
errors using minimum 5 qubits.

Other Codes

 --- Bennett, Di Vincenzo, Smolin and Wootters, PRA 54, 3824 (1996)
 --- Knill and Laflamme PRA 55, 900 (1997)

The quantum code we have analyzed worked because a finite set of
unitary errors mapped the code space to mutually orthogonal spaces,
which allowed the different errors to be identified and isolated, and the
fact that any error operation could be written as a linear combination of a
finite set of unitaries operators.

General necessary and sufficient conditions have been derived which a
code space must satisfy to be able to correct a set of errors. If the set of
errors is given by the set of operators {Ei}, and the projector onto the code
space is P, then the condition is

 P Ei
† Ej P = aij P

where aij is a Hermitian matrix.

General Conditions for QEC

To show that these conditions are sufficient, we first diagonalise the
matrix aij . If the matrix uij is the transform which diagonalises it, and we
set
 Σk Fk = ukl El

then
 P Fk

† Fl P = Σij uki u*
lj P Ei

† Ej P

 = Σij uki u*
lj aij P

 = dkl P

where dkl is diagonal. Now what is the action of Fl on P? Well, the trick is
to use the polar decomposition theorem on the product Fl P:

 Fl P = Ul (P Fk
† Fl P)1/2 = (dkl)1/2 P

So the action is just a unitary on the code space, and what is more,

The spaces to which the code is mapped by each of these unitaries are
mutually orthogonal, since
 P Fk

† Fl P = dkl P

So the code can correct the errors introduced by the Ei.

Necessity: Assume there is an operation described by the operators {Ri}
and consider the operation {Ei P}. Then, for all ρ we must have

 Σij RiEj P ρ P Ej
† Ri

† ∝ P ρ P

Now we invoke a theorem which says that the operator representations for
two identical operations are related by a unitary transformation of the sets
of operators. Hence

 RiEj P = cij P and thus also P Ek
† Ri

† = c*
ik P

Putting these together we have P Ek
† Ri

† RiEj P = c*
ik cij P and with

Σi Ri
† Ri = I we have P Ek

†Ej P = c*
ik cij P = akj P.

What about errors during a computation?
So we have seen that we can use quantum error correction to correct
errors in a quantum memory. However, to perform quantum computing
we must be able to correct errors which are happening while the
computation proceeds, including errors in the gates and even the error
correction procedures.

The ability to use error correction so as to reduce the effect of errors on a
computation to an arbitrary low level without requiring resources which
scale exponentially with the problem size or the level of error is referred
to as the ability to perform fault tolerant computation.

Fault Tolerance

We now ask that the gates and EC steps have the following property:

 A single failure in the operation causes at most 1 error in each output block.

It is also required that the measurement part of the EC step fails with
probability p2. Operations with this property is called fault tolerant.

2 qubit
gate

EC

EC

2 qubit
gate

EC

EC

To work out how fault tolerance can be achieved, the following approach
has been taken:

1. All gates act on encoded data.
2. Perform error correction after each gate operates.

So the picture is

 A block of qubits
encoding

a single qubit

By a single error in a gate we mean an error in a single unitary
operation involving 2 physical qubits in an encoding block. We will call
these physical gates. We assume as before that the errors in each of our
physical qubits and physical gates are independent.

Now we note that if there is a single error in any block of the final output the
computation is fine. So the computation is only in error if there is more than
one error in any logical qubit.

So we consider the probability that a single unit will produce more than one
error in any output block. If the probability of an error in any single input
block is p, then the probability of two in the output is p2.

2 qubit
gate

EC

EC

2 qubit
gate

EC

EC

 Single unit

This is because, one of the elements in the unit must fail in addition to the
error in the input block, or, if there are no errors in the input block, then two
elements of the unit must fail.

As a result, so long as the probability of any error in an input block is of
order p, this remains of order p for the output blocks. The probability of an
error in more than one output block is also higher than first order in p.

Put another way, we have a quantum computation that only fails if

1. Two elements in a given unit fail, which happens with probability mp2,
where m is the number of pairs of elements in a single unit, or

2. If pairs of consecutive units fail -- but this scales as the number of units,
just as if we hadn’t used any error correction.

So we win so long as p > 1/m ≈ 104 for most fault tolerant constructions.

Concatenation
Now, each of our units is a gate for the logical qubits which are the blocks.
So, if we wish we can replace all the physical bits in our fault tolerant
scheme with blocks which encode logical qubits, and all the physical gates
with fault tolerant gates acting on those logical qubits.

If we do this, then each of our units will only fail with probability m p2. As a
result, the top level of our computation will only fail with probability
m(m p2)2. If we concatenate in this recursive fashion k times, then the error
probability is reduced to (m p)2^k /m which is doubly exponential in k. The
size of the circuit, however, is dk which is merely exponential in k.

2 qubit
gate

EC

EC

2 qubit
gate

EC

EC

 Now replace
each element
with a fault-

tolerant
gate

The threshold theorem
Now, lets say we have a computation which requires N gates. For this to
succeed with probability 1-ε we need the error probability for each gate to
be less than ε/N. Thus we need k such that

 (m p)2^k/m < ε/N

which we can always do for some k so long as p is smaller than the threshold
1/m. Now, the number of gates required to do this is Ndk.
Finding k by taking logs in the above formula, we find that this scales as

 Ndk ∝ O(log(N/ε)N)

This is the threshold theorem - that given the error probability p per gate is
less than some threshold, a quantum circuit containing N gates may be
simulated with error at most ε, with a number of gates which is polynomial
in N/ε.

Note this says that quantum computing is possible in principle - not that it is
necessarily practical.

The construction of fault tolerant units (that is, units which implement
single gates with a reduced error probability) required fault tolerant gates -
that is, gates in which a single error in one of their basic elements caused
at most a single error in each output block.

Current proofs of the threshold theorem use such fault tolerant gates, and
thus a universal set of which has thus been found. We wont talk about
these in detail, but here is a simple example of a fault tolerant C-NOT gate
operating on the 3-qubit bit-flip correcting code:

Fault tolerant gates: A simple example

