Known errata for Stochastic Processes for Physicists, as of Nov 25, 2015:

## Errata for all versions printed to-date:

Eq. (3.69): Should be

$$
\frac{d V_{x}}{d t}=-2\left(\gamma-\beta^{2}\right)\left\langle x^{2}\right\rangle+2 \gamma\langle x\rangle^{2}=-2\left(\gamma-\beta^{2}\right) V_{x}+2 \beta^{2}\langle x\rangle^{2}
$$

Eq. (3.94) should be

$$
\begin{align*}
I & =\frac{1}{2} \lim _{\Delta t \rightarrow 0} \sum_{n=0}^{N-1}\left(Z_{n}+f_{n} \Delta W_{n}\right)^{2}-Z_{n}^{2}-\left(f_{n} \Delta W_{n}\right)^{2} \\
& =\frac{1}{2} \lim _{\Delta t \rightarrow 0} \sum_{n=0}^{N-1} \Delta\left(Z_{n}^{2}\right)-f_{n}^{2} \Delta W_{n}^{2}=\frac{1}{2}\left(\int_{0}^{T} d\left(Z_{n}^{2}(t)\right)-\int_{0}^{T} f^{2}(t)(d W)^{2}\right) \\
& =\frac{1}{2}\left(Z^{2}(T)-\int_{0}^{T} f^{2}(t) d t\right) \tag{1}
\end{align*}
$$

Eq.(2.9) should be

$$
d\binom{x}{p} \equiv\binom{d x}{d p}=\binom{p / m}{-k x} d t=\left(\begin{array}{cc}
0 & 1 / m \\
-k & 0
\end{array}\right)\binom{x}{p} d t .
$$

Eq.(5.39) should be

$$
\bar{a}(\Delta t)=\frac{1}{m}\left(\frac{\Delta p}{\Delta t}\right)=\frac{1}{m}\left(-\gamma p+\beta \frac{\Delta W}{\Delta t}\right)
$$

Eq.(7.28): remove the factor of " 2 " in front of the $J$.

Eq.(7.29): remove the factor of " 2 " on the bottom line.

Eq.(7.30): replace the minus sign with a plus sign.

Eq.(7.33): In the second line of this equation, the expression $\gamma \partial P / \partial p$ should be $\gamma \partial / \partial p$.

Section 7.8: The definition given for the diffusion coefficient $D$ is non-standard. This definition makes $D$ equal to twice the value of the standard definition. That is, the standard definition is to write the diffusion equation without the factor of $1 / 2$.

Errata for the first and second printings:
(these have been corrected in the newer print-on-demand version)

## Ch 1

The heading of section 1.5 should be "Adding independent random variables together".

The first line of section 1.5: "When we have two continuous random variables . . " should be "When we have two independent continuous random variables ..."

Eq.(1.15) should be

$$
P_{Z}(z)=\int_{-\infty}^{\infty} P_{X}(z-s) P_{Y}(s) d s \equiv P_{X} * P_{Y}
$$

The first sentence of section 1.6: "... it can be useful to know how calculate..." should be "... it can be useful to know how to calculate..."

In section 1.9: the text "is defined as the nth derivative of the $\log$ of the characteristic function, also evaluated at zero." should be replaced with "is also given by Eq.(1.42), but with $\chi$ replaced with $\log (\chi)$ ".

## Ch 2

Eq.(2.4) should be

$$
\frac{d x}{d t}=\frac{p}{m} \quad \text { and } \quad \frac{d p}{d t}=-k x .
$$

Eq.(2.5) should be

$$
\frac{d}{d t}\binom{x}{p} \equiv\binom{d x / d t}{d p / d t}=\binom{p / m}{-k x}=\left(\begin{array}{cc}
0 & 1 / m \\
-k & 0
\end{array}\right)\binom{x}{p}
$$

Eq.(2.5) should be

$$
A=\left(\begin{array}{cc}
0 & 1 / m \\
-k & 0
\end{array}\right),
$$

The minus sign in front of the $\gamma$ in Eq.(2.50) should be plus.

Eq.(2.53) should be

$$
e^{\lambda \sigma}=\cosh (\lambda) I+\sinh (\lambda) \sigma
$$

## Ch 3

Eq.(3.28) should be

$$
P\left(Z_{n}\right)=\frac{e^{-Z_{n} /(2 \Delta t)}}{\sqrt{2 \pi \Delta t Z_{n}}}
$$

Eq.(3.32) should be

$$
\frac{1}{\sqrt{1-x}} \approx 1+x / 2
$$

Eqs. (3.39) and (3.40): all occurrences of $f$ should be replaced by $y$.
Eq. (3.46): last line should be

$$
=g^{2} \int_{0}^{t} e^{2 \gamma s} d s=\frac{g^{2}}{2 \gamma}\left(e^{2 \gamma t}-1\right)
$$

Second line after Eq.(3.50): "Section 1.2" should be "Section 2.4"
Eq. (3.62): The " $d t$ " on the right hand side should be deleted.
Eq. (3.67): Should be

$$
d\left\langle x^{2}\right\rangle=-\left(2 \gamma-\beta^{2}\right)\left\langle x^{2}\right\rangle d t .
$$

Eq. (3.68): Should be

$$
\frac{d V_{x}}{d t}=\frac{d\left\langle x^{2}\right\rangle}{d t}-\frac{d\langle x\rangle^{2}}{d t}=\frac{d\left\langle x^{2}\right\rangle}{d t}-2\langle x\rangle \frac{d\langle x\rangle}{d t} .
$$

Last paragraph of section 3.7: " $\ldots$ will include the third moments, and so." should be " $\ldots$ will include the third moments, and so on.".

Eq. (3.74): the second line should be

$$
=\left\langle M\binom{d W_{1}}{d W_{2}} \quad\left(d W_{1}, d W_{2}\right) M^{\mathrm{T}}\right\rangle
$$

Eq. (3.76): the second line should be

$$
=M\binom{d W_{1}}{d W_{2}} \quad\left(d W_{1}, d W_{2}\right) M^{\mathrm{T}}
$$

Eq. (3.75): should be $C=2 \eta \sqrt{1-\eta^{2}}$
Eq. (3.89) Should be

$$
I=\int_{0}^{T} \int_{t}^{T} d s f(t) d W(t)=\int_{0}^{T}(T-t) f(t) d W(t)
$$

Eq. (3.90) should be

$$
I=\int_{0}^{T}[(T-t) f(t)]^{2} d t
$$

Section 3.9, second paragraph: "equation drive by" should be "equation driven by"

Page 53, exercise 9, two lines below Eq. (3.127): "fist" should be "first"

## Ch 4

Page 55,4 th line from the bottom: "pot" should be "plot"

Eq. (4.17) should be

$$
X(t)=x^{\prime}+\int_{t^{\prime}}^{t} d W=x^{\prime}+W(t)-W\left(t^{\prime}\right)
$$

Eq. (4.21) should be

$$
P\left(x, t ; x^{\prime}, t^{\prime}\right)=P\left(x, t \mid x^{\prime}, t^{\prime}\right) P\left(x^{\prime}, t^{\prime}\right)=\frac{e^{-\left(x-x^{\prime}\right)^{2} /\left[2\left(t-t^{\prime}\right)\right]-x^{\prime 2} /\left[2 t^{\prime}\right]}}{2 \pi \sqrt{\left(t-t^{\prime}\right) t^{\prime}}}
$$

First line of section 4.5: the two occurrences of "Section 1 " should replaced with "Section 1.8"

Eq.(4.35), last line: $h(t, \tau)$ should be replaced with $h(\tau)$

Eq.(4.36): $h(t, \tau)$ should be replaced with $h(\tau)$

Eq.(4.39): $d t$ should be replaced with $d \nu$

Eq.(4.54): The lower limit of the integral is currently $\infty$. It should be replaced by $-\infty$

## Ch 5

Eq. (5.12) should be

$$
\begin{aligned}
x(t) & =\int_{0}^{t} \frac{p(s)}{m} d s=\frac{p(0)}{m} \int_{0}^{t} e^{-\gamma s} d s+\frac{g}{m} \int_{0}^{t}\left[\int_{0}^{s} e^{-\gamma\left(s-s^{\prime}\right)} d W\left(s^{\prime}\right)\right] d s \\
& =\frac{p(0)}{m} \int_{0}^{t} e^{-\gamma s} d s+\frac{g}{m} \int_{0}^{t} e^{\gamma s^{\prime}}\left[\int_{s^{\prime}}^{t} e^{-\gamma s} d s\right] d W\left(s^{\prime}\right) \\
& =\frac{1}{m \gamma}\left(1-e^{-\gamma t}\right) p(0)+\frac{g}{m \gamma} \int_{0}^{t}\left(1-e^{-\gamma\left(t-s^{\prime}\right)}\right) d W\left(s^{\prime}\right) \\
& =\frac{1}{m \gamma}\left(1-e^{-\gamma t}\right) p(0)+\frac{g}{m \gamma} \int_{0}^{t}\left(1-e^{-\gamma s}\right) d W(s)
\end{aligned}
$$

## Ch 6

All occurrences of "Milstien's method" (pages 95 and 98) should be replaced by "Milstein's method"

In the heading of section 6.5, "Runge-Kutter" should be "Runge-Kutta".

## Ch 7

Eq.(7.2): The RHS should be $d h$, not $d f$.
Just after Eq.(7.2): ". . . equation for the mean of $f \ldots$. . should be "... equation for the mean of $h \ldots$.
Just before Eq.(7.22): "differential equation for $h$ " should be "differential equation for $\xi$ "
Eq.(7.23) should have a " 2 " inserted before the $f(u)$.
Eq.(7.28) should have a " 2 " inserted before the $f(u)$.

## Ch 8

In the paragraph before Eq. (8.4), the expression $(\lambda \Delta t)^{m}(1-\Delta t)^{M-m}$ should be $(\lambda \Delta t)^{m}(1-\lambda \Delta t)^{M-m}$.
In Eqs. (8.35) and (8.36), all occurrences of $\lambda^{n}$ should be replaced with $(\lambda t)^{n}$.

## Ch 9

In Eq. $(9.16), f(t)$ should be $f(s)$.
In Eq. (9.17), $[f(t)]^{\alpha} d t$ should be $[f(s)]^{\alpha} d s$.
In Eq.(9.44), $g(x, t)$ should be $g^{2}(x, t)$.
Eq.(9.46) should be

$$
\begin{aligned}
\qquad d y(t)= & \left(\frac{\partial y}{\partial x}\right) d x_{\mathrm{c}}(t)+\left[\left(\frac{\partial y}{\partial t}\right)+\frac{g(x, t)}{2}\left(\frac{\partial^{2} y}{\partial x^{2}}\right)\right] d t \\
& +[y(x+\Delta J(t), t)-y(x, t)], \\
\text { with } \Delta J(t)= & \begin{cases}\text { size of jump at } t_{i}, & t=t_{i}, \forall i \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

Eq.(9.47) should be

$$
\begin{aligned}
d y(t)= & \left(\frac{\partial y}{\partial x}\right) d x(t)+\left[\left(\frac{\partial y}{\partial t}\right)+\frac{g(x, t)}{2}\left(\frac{\partial^{2} y}{\partial x^{2}}\right)\right] d t \\
& +\left[y(x+\Delta J(t), t)-y(x, t)-\frac{d y(x, t)}{d x} \Delta J(t)\right]
\end{aligned}
$$

First line after Eq.(9.47) should be: "In this expression the term $-\frac{d y}{d x} \Delta J(t), \ldots$ "

## Ch 10

Three lines above Eq. (10.20): "... above exert in plan language" should be "... above excerpt in plain language"

## Errata for the first printing only:

## Ch 1

Page 2: Figure 1 illustrates summing the probabilities from 3 to 4 , not 4 to 6 as implied in the text.

## Appendix

Page 181, Eq.(A5): The last term on the second line should not have a minus sign.
Pages 181 and 182, Eqs. (A6) - (A11): Wherever the expression $-\beta^{2} /\left(4 \alpha^{2}\right)$ appears in an exponential, it should be replaced with $+\beta^{2} /(4 \alpha)$.

Eqs.(A.18) and (A19) should be

$$
\begin{aligned}
\int_{0}^{\infty} x^{2 n} e^{-\alpha x^{2}} d x & =\frac{\sqrt{\pi}}{(2 \sqrt{\alpha})^{2 n+1}} \frac{(2 n)!}{n!} \\
\int_{0}^{\infty} x^{2 n+1} e^{-\alpha x^{2}} d x & =\frac{n!}{2 \alpha^{n+1}} .
\end{aligned}
$$

## Ch 3

Eq. (3.78): ( $M \mathbf{d} \mathbf{V}$ ) should be replaced with ( $M \mathbf{d W}$ ).

