
Chapter 1

Quantum Measurement Theory

Before we begin, it is worth mentioning a few things about terminology. In mathe-
matics texts it is usual to denote a random variable as a capital letter, say X , and the
variable denoting one of the values it can take as the corresponding lower case letter,
x. This provides technical precision, since the concept of a random variable, and the
concept of one of the values it can take, are distinct. However, physicists tend to use
the same symbol to denote both things, because it causes no confusion in practice.
This is the style I prefer, so I will use it here.

Secondly, we physicists often use the term “probability distribution” as synony-
mous with “probability density”, whereas mathematicians use the former term to
mean the anti-derivative of a probability density. Defining “distribution” to be syn-
onymous with “density” is convenient, because “probability density” can only be
used to refer to continuous distributions and not to discrete ones, whereas “probabil-
ity distribution” can be used for both. For this reason we will use the term probability
distribution to mean probability density.

This text is for graduate physics students, and as such we assume that the reader
is familiar with quantum mechanics, the basics of probability theory, and various
mathematical concepts such as Fourier transforms and δ-functions. Everything that
one needs to know about probability theory and Fourier transforms can be found
in Chapter 1 of reference [1] or Chapter 4 of reference [2] and Chapter 1 of refer-
ence [3]. We also recommend Jaynes’ excellent book on probability theory [4].

1.1 Classical Measurement Theory

Classical measurement theory, also known as Bayesian statistical inference, tells us
how our knowledge about the value of some quantity, x, changes when we obtain a
piece of data relating to x. To understand how this works, we need to know first how
to describe the knowledge we have regarding x. We will assume that x is some vari-
able that can take any real value, but more generally it could be a vector of discrete
or continuous variables. Since we need to make a measurement to determine x, we
must be uncertain about its value. Our knowledge about x is therefore captured by a
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probability distribution, P (x), for the values of x. This probability distribution tells
us, based on the information currently available, the likelihood that x will have var-
ious values, and overall how certain, or uncertain, we are about x. This distribution
is called our state-of-knowledge of x.

To determine how our state-of-knowledge changes when we obtain a piece of data
y, we have to know how y is related to x. To be able to describe measurements, this
relationship must be probabilistic: if y were deterministically related to x (meaning
that y was a function of x), then we could determine x precisely once we knew y,
simply by inverting the function. This is not what happens when we make measure-
ments; measurements are never perfectly precise. After we have made a measure-
ment of x, giving a result y, we are always left with some uncertainty about x.

Consider measuring the length of an object with a ruler. In this case the result of
the measurement is equal to the true length plus a random error. Thus, given the true
length of the object (the value of x) there is a probability distribution for the result
y. The probability distribution for y is peaked at y = x, and thus the probability
distribution for y is a function of x. Because this probability distribution for y de-
pends on (is conditional upon) the value of x, it is called a conditional probability
distribution for y, and is written P (y|x) (this is read as “P of y given x”). The con-
ditional probability for the measurement result (the data) y, given the value of the
quantity to be measured, x, completely defines the measurement. This conditional
probability is determined by the physical procedure used to make the measurement,
and is referred to as the likelihood function for the measurement.

To determine how our state-of-knowlegde regarding x, P (x), changes when we
obtain the value of y, we use the relationships between the joint probability for two
random variables x and y, P (x, y), and the conditional probabilities P (y|x) and
P (x|y). These relationships are

P (x, y) = P (x|y)P (y) = P (y|x)P (x). (1.1)

Here P (y) is the probability distribution for y irrespective of the value of x (also
called the marginal distribution for y), and is given by

P (y) =
∫ ∞

−∞
P (x, y)dx. (1.2)

Now P (x) is our state-of-knowlegde of x prior to making the measurement, and it
is therefore the probability density for x irrespective of the value of y. It is therefore
also the marginal probability for x, and thus given by

P (x) =
∫ ∞

−∞
P (x, y)dy. (1.3)

While the relationships in Eq.(1.1) are fairly intuitive, they are explained further in,
for example, references [1] and [2].
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Rearranging Eq.(1.1) we obtain the famous relationship known as Bayes’ Theo-
rem, being

P (x|y) =
P (y|x)P (x)

P (y)
. (1.4)

Upon examining Eq.(1.4) we will see that it tells us exactly how to change our state-
of-knowledge when we obtain the measurement result y. First note that since P (x|y)
must be normalized (that is, its integral over x must be unity), the value of P (y) on
the bottom line is completely determined by this normalization. We can therefore
write Bayes’ theorem as

P (x|y) =
P (y|x)P (x)

N , where N =
∫ ∞

−∞
P (y|x)P (x)dx = P (y). (1.5)

We see that on the right hand side (RHS) we have our state-of-knoweldge of x before
we obtain the data y, and on the LHS the probability for x given that value of y. The
LHS is therefore our state-of-knowlegde after obtaining the value of y. In Eq.(1.5)
P (x) is called the prior probability, and P (x|y) the posteria probability. So Bayes’
theorem tells us that to obtain our new state-of-knowledge once we have made our
measurement: we simply multiply our current state-of-knowlegde by the likelihood
function P (y|x), and normalize the result. Note that the prior is simply the marginal
(overall) distribution of x. The relationship given by Eq.(1.5), Bayes’ Theorem, is
the fundamental theorem of classical measurement theory.

1.1.1 Understanding Bayes’ theorem

While Bayes’ theorem (Eq.(1.5)) is simple to derive, to obtain a direct understanding
of it requires a bit more work. To this end consider a measurement of a discrete
variable, x, in which x has only two values. We will call these values 0 and 1. Our
measurement will also have only two outcomes, which we will denote by y = 0
and y = 1. In our discussion of Bayes’ theorem above, we assumed that x was
continuous, so let us take a minute to re-orient our thinking to discrete variables. In
the present case our state-of-knowledge, P (x), has only two values, being P (0) and
P (1) (and, of course, P (0) + P (1) = 1). The conditional probability, P (y|x), also
has only two values for each value of x. If we make the measurement and obtain the
result y = 1 (for example), then Bayes’ theorem tells us that our posterior is given
by

P (x|1) =
P (1|x)P (x)∑
x′ P (1|x′)P (x′)

=
P (1|x)P (x)

P (1|0)P (0) + P (1|1)P (1)
. (1.6)

We now wish to obtain a better understanding of this expression.
To do so let us choose a specific likelihood function for the measurement. This

likelihood function is given in table 1.1, and contains the parameter α. If α is close to
unity, then the two values of x give very different distributions for the measurement
result y, and in this case we would expect the measurement to tell us a lot about x.
Conversely, if α is close to 1/2, then the reverse it true. For the sake of concreteness
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P (y|x) y = 0 y = 1
x = 0 α 1− α
x = 1 1− α α

Table 1.1: The likelihood function for a simple “two-outcome” measurement.

let us choose 0.5 < α < 1. With this choice, if x = 0 then it is more likely that we
will get the result y = 0, and if x = 1 it is more likely that we will get y = 1.

Now assume that we initially know nothing about x, so that our prior state of
knowledge is P (0) = 0.5 = P (1). What happens when we make the measurement
and get the result y = 1? Since our prior is uniform, Bayes’ theorem tells us that our
posterior is simply the likelihood function (normalized if necessary), and in this case
it is already normalized. Our posterior is thus P (0|1) = 1− α and P (1|1) = α. So
it is now more likely that x = 1 than x = 0. This is indeed intuitively reasonable.
The likelihood function tells us that if x were to be 0 then it would be less likely that
we would get the result 1, so it is reasonable that since we obtained the result 1, it is
more likely that x = 1 than that x = 0.

The above discussion shows that if the prior is uniform, Bayes’ theorem tells us
that the values of x that are more likely are those for which the result we have ob-
tained is the more likely outcome.

Now let us examine why we need to include the prior, in addition to the likelihood
function, when calculating our posterior. This is clearest when the prior is strongly
weighted towards one value of x. Consider a situation in which the prior is P (0) =
0.999 and P (1) = 0.001. This means that in the absence of any further data, x
will only be equal to 1 one time in a thousand cases. Now let us consider a slightly
different two-come measurement from the one above (this new choice will make the
logic simple). The likelihood function for this new measurement is given in table 1.2,
and in words is as follows: if x = 0 then y is always equal to 0. If x = 1, then y = 1
with probability 0.999 and y = 0 only one time in a thousand. This means that, if
the prior is flat, upon obtaining the result α = 1 the value of x would be equal to
1 nine hundred and ninety nine times out of thousand. So what is the case when
the prior is as above, highly weighted towards x = 0? First we note that x is equal
to 1 only one time in a thousand. Now, if we get the result y = 1 there are two
possibilities. Either x = 1, which happens one time in one thousand, or x = 0 and
we go the result y = 1 anyway, which also happens approximately one time in a
thousand. (The precise figure is the frequency of x = 0 multiplied by the frequency
of the result y = 1 given x = 0, which is 0.999 × 0.001 ≈ 1/(1001)). Thus the
result y = 1 happens approximately one time in 500, and half of these are due to
x = 0, and half due to x = 1. Thus, when we obtain the result y = 1, there is only
a 50% chance that x = 1. This, is of course, exactly what Bayes’ theorem tells us;
by multiplying the likelihood function that weights x = 1 very highly, by the prior
which weights x = 0 very highly, we obtain an approximately flat posterior.
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P (y|x) y = 0 y = 1
x = 0 1 0
x = 1 0.001 0.999

Table 1.2: The likelihood function for our second example of a simple “two-
outcome” measurement.

The example we have just considered applies directly to a real, and very important
situation: testing for the HIV virus. Each test is pretty reliable, giving a false positive
only about one time in a thousand. On that basis alone one might think that when a
result comes back positive, there is little reason to perform a follow-up test to confirm
it. But this is very wrong. Since very few patients have HIV, false positives come up
just as frequently as real positives. Thus, whenever a positive test result comes back,
it is essential to do a follow-up test to check that it is not a false positive. Bayesian
inference, and thus measurement theory, is therefore crucial in real world problems.

To complete our discussion of Bayes’ theorem it is worth noting that our state-of-
knowledge does not necessarily become more certain when we make a measurement.
To take the example of the HIV test above, before we obtain the result of the test we
are almost certain that the patient is HIV negative, since the vast majority of patients
are. However, upon obtaining a positive test result, there is an approximately fifty-
fifty chance that the patient is HIV positive. Thus, after obtaining the measurement
result, we are less certain of the HIV status of the patient. Even in view of this, all
measurements do have the property that, upon making the measurement, we become
more certain on average (where the average is taken over all the possible measure-
ment results). We will be able to make this statement precise once we have described
how to quantify the concept of information in Chapter 2.

1.1.2 Multiple measurements and Gaussian distributions

Multiple measurements

Having made a measurement of x, what happens when we make a second measure-
ment? We might expect that we simply repeat the process of multiplying our current
state-of-knowledge, now given by P (x|y), by the likelihood function for the new
measurement. This is correct so long as the results of the two measurements are
independent, and is simple to show as follows. Let us say that we make N mea-
surements, and the results (the data) obtained from these measurements are yi for
i = 1, . . . , N . Bayes’ theorem tells us that

P (x|y1, . . . , yN ) =
P (y1, . . . , yN |x)P (x)

N , (1.7)
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with N =
∫∞
−∞P (y1, . . . , yN |x)P (x)dx. The fact that all the measurement results

are independent means that

P (y1, . . . , yN |x) = P (y1|x)P (y2|x) · · ·P (yN |x), (1.8)

and with this Bayes’ theorem becomes

P (x|y1, . . . , yN ) =
P (y1, . . . , yN |x)P (x)

N

=
P (yN |x) · · ·P (y1|x)P (x)

N

=
P (yN |x)
NN

· · · P (y1|x)P (x)
N1

. (1.9)

So we see that each time we make another independent measurement we update our
state-of-knowledge by multiplying it by the likelihood function and normalizing the
result.

Pooling independent knowledge

It turns out that classical measurement theory provides us with a simple way to pool
the knowledge of two observers so long as their information has been obtained inde-
pendently. If two observers, A and B, have the respective states-of-knowledge P1(x)
and P2(x) about a quantity x, then we can write each of these as

PA(x) =
P (yA|x)Pprior(x)

NA
, (1.10)

PB(x) =
P (yB|x)Pprior(x)

NB
, (1.11)

where yA and yB are the vectors of data obtained by the respective observers. Since
we intend the data the observers have obtained to represent all the information they
each have about x, Pprior(x) is the prior that describes no knowledge about x. If we
choose the measure for integration over x so that the prior corresponding to knowing
nothing is equal to unity (Pprior(x) = 1), then an observer who has access to the data
of both A and B has the state-of-knowledge

P (x) =
P (yA|x)P (yB|x)

N ′ =
PA(x)PB(x)

N . (1.12)

So all we have to do to pool the knowledge of two (or more) observers is to multiply
their states-of-knowledge together, and normalize the result.

The ubiquity of Gaussian measurements

Now consider applying classical measurement theory to the simple example dis-
cussed above, that of measuring the length of an object with a ruler. To describe this
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measurement we need to decide how the result that we get, y, depends upon the true
length x. We can think of y as being equal to the true length plus a random “error”.
The error in a measurement is often described well by a Gaussian distribution. The
reason for this is that the error is usually the result of random contributions from
many different sources. When we add many independent random variables together,
the central limit theorem tells us that the resulting random variable has an approx-
imately Gaussian distribution. If the error in our measurement of x is a Gaussian
with mean zero and variance V , then the probability distribution for y, given x, is a
Gaussian centered at x:

P (y|x) =
1√
2πV

e−(y−x)2/(2V ). (1.13)

This is the likelihood function for the measurement. If we have absolutely no knowl-
edge of x before the measurement (never the case in reality, of course), then we can
set P (x) = 1. Our knowledge of x after making the measurement is then simply the
likelihood function, normalized so that it is a valid probability distribution over x for
each value of y. In this case the normalization is already correct, and so

P (x|y) =
1√
2πV

e−(x−y)2/(2V ). (1.14)

This tells us that the value of x is a Gaussian centered at y, with variance V , and
thus that the most likely value of x is y, and the expectation value of x is also equal
to y. It is customary to quote the error on a measured quantity as twice the standard
deviation. Thus we write the value of x as y ± 2

√
V .

The ubiquity of Gaussian states-of-knowledge

It is not only measurement errors that tend to be Gaussian, but also states-of-knowledge.
The reason for this is that when one makes many measurements of a given quantity,
the resulting state-of-knowledge is the result of multiplying together many likelihood
functions. One can show that even if these likelihood functions are not themselves
Gaussian, the result usually is. This is because there is a central limit theorem for
multiplication that follows from the usual central limit theorem for summing ran-
dom variables. To see how this works we first recall that if we have two independent
random variables x and y, the probability distribution for their sum, z = x + y, is
the convolution of the distributions for x and y:

Pz(z) = Px(x) ∗ Py(y) ≡
∫ ∞

−∞
Px(u)Py(z − u)du. (1.15)

The central limit theorem states that so long as the variances of all the convolved
distributions are finite, then as one convolves more distributions together, the closer
the result is to a Gaussian.
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To obtain a similar result for multiplying a number of probability distributions
together, we take the Fourier transforms of these probability distributions. Multi-
plying two functions together is the same as convolving their Fourier transforms.
That is, the Fourier transform of the product of two functions is the convolution of
their Fourier transforms. So the central limit theorem tells us that if we convolve the
Fourier transforms of a set of distributions together, then the result is close to a Gaus-
sian. Since the inverse fourier transform of this approximate Gaussian is the product
of all the probability distributions, and since the Fourier transform of a Gaussian is
also Gaussian, the product of the distributions is approximately Gaussian.

So when we make multiple measurements to learn about some quantity, or when
our knowledge about a quantity is derived from many different sources, then our
state-of-knowledge will be approximately Gaussian. Just as Gaussian errors are
common in nature, Gaussian states-of-knowlegde are also common.

Adding noise and making measurements can be regarded as opposite processes.
The more noise (random variables) we add to a quantity, the more uncertain it be-
comes. The more measurements we make on a quantity, the more certain (on aver-
age) it becomes. It is interesting to note that the mathematical operations that de-
scribe each of these processes, convolution for adding noise, and multiplication for
making measurements, are dual to each other from the point of view of the Fourier
transform.

1.1.3 Prior states-of-knowledge and invariance

Bayes’ theorem makes it clear how to update our state-of-knowledge whenever we
obtain new data. So long as we know the overall distribution for the unknown quan-
tity (the prior), then Bayes’ theorem is strictly correct and open to no interpretation.
However, for many situations is it not clear what the prior is. Before we discuss the
main tool for determining priors, it is important to note that, in many situations, the
choice of prior is, in fact, unimportant. This is the case when we can obtain enough
data that the likelihood function is much sharper (has much less uncertainty) than
any reasonable prior for the problem. In this case the prior has very little influence
on the final expectation value of the measured quantity, and is therefore unimpor-
tant. In this case we can ignore the prior completely and set the posterior equal to
the (correctly normalized) likelihood function for the set of measurements.

In many problems in which we need to specify a prior, we need the prior to capture
what it means for us to “know nothing” about the quantity to be measured. The
reason for this is that we do not want the prior to bias our results one way or the
other; the prior should not contain any hidden assumptions of prior pedjudice. The
question of what it means to know nothing is actually quite subtle. In the case of
measuring the position of an object in space, it seems quite obvious that the prior
should be constant and extend from −∞ to ∞. This prior is not normalizable, but
this does not matter, since the likelihood function, and thus the posterior, will be
for any reasonable measurement. However, the question of what it means to know
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nothing about a quantity that can only be positive, such as the number of sand grains
in a sand pile, is not at all obvious. As will become clear, a prior that is constant on
the interval (1,∞) is not the correct choice for this case.

The problem of what it means to know nothing about a positive quantity is solved
by using the idea that the prior should be invariant under a transformation. The key
is to realize that if one knows nothing about the value of a positive quantity, λ, then
multiplying λ by any number should not change ones state-of-knowledge. That is, if
one is completely ignorant of λ, then one must be ignorant of the overall scale of λ.
There is only one state-of-knowledge that is invariant under a scaling transformation,
and that is

P (λ) =
1
λ

. (1.16)

This prior is also not normalizable, but this is fine so long as the likelihood function
is normalizable.

The powerful technique of identifying transformations over which our prior state-
of-knowledge must be invariant was introduced by Jaynes [5, 4], inspired by the
work of Jeffreys [6, 7, 8]. Returning to the problem of the prior for the location of
an object, we see that the flat prior is the one that is invariant under all translations,
being the natural transformation in that case. Natural transformations for a given
quantity are those transformations that map all admissible values of the quantity to
admissible values. That is why the translation transformation is not appropriate for
quantities that can only be positive. An excellent example of the use of invariance
for determining priors is given by Jaynes’ solution to “Bertrand’s problem”, and can
be found in [4].

Using the notion of invariance it is simple to determine priors for quantities that
have symmetries. The simplest case is a “six-sided” die. If the die is perfectly
symmetric, then our prior should be invariant under all permutations of the six-faces
of the die. The result is a prior that assigns equal probability to all the faces. A
less trivial example is a prior over the possible states of an N -dimensional quantum
system. These states live in an N -dimensional complex vector space. In this case
the natural set of transformations are those given by all the unitary transformations
on the vector space. In this case the zero-knowledge prior is the one that is invariant
under all unitaries. Actually what one does for this problem is to choose the measure
over which to integrate so that the probability distribution is unity, and this means
selecting the measure that is unitarily covariant. This measure is called the Harr
measure, and is given in Appendix C. The definition of a measure, using a minimum
of technical jargon, can be found in reference [1].

Priors: a tricky example

For the sake of interest we pause to consider an example that shows the kinds of
problems that can arise when choosing priors. This is the apparent paradox of the
“two-envelopes problem”. In this problem we are given two envelopes, one of which
contains twice as much money as the other. We are allowed to open only one of
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the envelopes, and then we get to choose which envelope we will take home to
spend. Before we open one of the envelopes, clearly there is no reason to favor
either envelope. Assume that we now open one of the envelopes and find that it
contains m dollars. We now know that the second envelope (the one we haven’t
opened) contains either m/2 dollars or 2m dollars. We conclude that if we choose
to keep the second envelope instead of the first, then we stand to loose m/2 dollars,
or gain x dollars. We thus stand to gain more than we will loose by choosing the
second envelope, and so it appears that we should do so. There is clearly something
wrong with this reasoning, because if we had instead chosen to open the second
envelope, then precisely the same reasoning would now tell us to take home the first
envelope!

What is wrong with the above analysis is the hidden assumption we have made
about what it means to initially “know nothing” about the amount of money in the
envelopes. That is, we have arbitrarily chosen a prior, and this causes problems with
our reasoning. Now consider the problem again, with the prior made explicit, and in
a situation in which we can easily determine what the prior should be. As before we
are given two envelopes, one of which contains twice as much money as the other,
but this time we are told that the smaller amount of money has a uniform distribution
between 0 and 100 dollars. This distribution is our prior. Now if we open one of the
envelopes, and find that it contains 10 dollars we can work out precisely the relative
probabilities that the second envelope contains either 5 dollars or 20 dollars, and
make out choice appropriately. Since the prior is flat in the smaller amount, in this
case we should definitely pick the second envelope. However, if we open the first
envelope and find that it contains 110 dollars, then we know that we should keep it;
in this case Bayesian inference tells us that since the smaller amount cannot be larger
than 100 dollars, this envelope contains the larger amount. There is no paradox so
long as we choose a meaningful prior. In the original statement of the problem, it is
assumed implicitly that knowing nothing means that the prior is flat from zero out to
infinity. This is obviously nonsense, because if this were really the case, when we
opened the envelop we would find an unimaginably large sum of money in it — in
fact, we would find an infinite amount of money in it. We know, therefor, that there
must be some kind of upper limit in the prior.

The problem with the “two-envelopes” paradox is that we do not know how to
quantify what it means to say that we know that one of the envelopes contains twice
as much money as the other, but know nothing else about these amounts. We might
assume that it should be the scale invariant prior for the smaller amount, but this
cannot be the case because it does not resolve the paradox; apparently the scale-
invariant prior does not take into account that there are two related quantities to
consider, rather than only one. Nevertheless, what we do know is that if we knew
nothing to begin with, then upon opening one of the envelopes we must still have
no reason to prefer one envelope over the other. Thus the prior that captures what
it means to know nothing in this case must be the one that tells us, upon opening
the first envelope, that we stand to neither gain nor lose, on average, by switching
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to the other envelope. This means that our state-of-knowledge regarding the second
envelope, once we open the first, must be such that the average amount of money in
the second envelope is equal to the amount in the first. It is not difficult to use this to
determine the prior, and we leave it as an exercise.

1.2 Quantum Measurement Theory

1.2.1 The measurement postulate

The state of a quantum system, |ψ〉, is a vector in a complex vector space. If the set
of vectors {|n〉}, n = 0, . . . , N − 1 (where N may be ∞) is an orthonormal basis
for this space, then we can always express |ψ〉 as

|ψ〉 =
∑

n

cn|n〉 (1.17)

for some complex coefficients cn, where
∑

n |cn|2 = 1.
The basis of quantum measurement theory is the following postulate: We can

choose any basis, and look to see which one of these basis states the system is in.
When we do so, we will find the system to be in one of these basis states, even
though it may have been in any state |ψ〉 before the measurement. Which basis state
we find is random. If the system is initially in the state |ψ〉 then the probability that
we will find state |n〉 is given by |cn|2. A measurement like this, for which the result
is one of a set of basis states, is called a von Neumann measurement. Before we
use this basic measurement postulate to derive quantum measurement theory (which
has, necessarily, a very similar structure to classical measurement theory), we need
to know how to describe states-of-knowledge about quantum systems.

1.2.2 Quantum states-of-knowledge: density matrices

Quantum states already contain within them probabilities — once we express a quan-
tum state in some basis, the coefficients for that basis determine the probabilities for
finding the system in those basis states. However, these probabilities are not enough
to describe all the possible states-of-knowledge that we might have about a quantum
system. Even though a system may actually be in a given state |ψ〉, we may not
know what this state is. In general then, our state-of-knowledge about a quantum
system can be described by a probability density over all the possible states |ψ〉. We
might refer to this probability density as describing our classical uncertainty about
the system, and the coefficients cn as describing the quantum uncertainty inherent in
a given quantum state-vector.

While a complete state-of-knowledge of a quantum system is a probability den-
sity over all the possible states |ψ〉, for most purposes one can use a more compact
representation of this state-of-knowledge. This compact representation is called the
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density matrix. It was devised independently by von Neumann [9] and Landau [10]
in 1927.

To obtain the density matrix formalism, we first recall that the expectation value
of a physical observable, for a system in state |ψ〉, is given by

〈X〉 = 〈ψ|X|ψ〉 = Tr[X|ψ〉〈ψ|], (1.18)

where X is the operator corresponding to that observable. So while the expectation
value of an observable is quadratic in the vector |ψ〉, it is linear in the operator
(matrix) |ψ〉〈ψ|. Expectation values are also linear in classical probabilities. If our
state-of-knowledge is a probability distribution over the M states {|φm〉}, where the
probability of the system being in the state labeled by m is pm, then the expectation
value of X is

〈X〉 =
∑

m

pm〈φm|X|φm〉 =
∑

m

pmTr[X|φm〉〈φm|]

= Tr

[
X

(
∑

m

pm|φm〉〈φm|
)]

. (1.19)

So we see that the matrix
ρ ≡

∑

m

pm|φm〉〈φm| (1.20)

is sufficient to calculate the expectation value of any operator. We will see below
that it is also sufficient to calculate the results of any measurement preformed on the
system. Note that since it is only the results of measurements on quantum systems
that determine events in the macroscopic world (if you are not convinced of this
assertion, a more detailed explanation is given in section 4.2.3), questions about
the future behavior of a quantum system are ultimately questions about the results
of measurements. Thus ρ is sufficient to fully characterize the future behavior of
a quantum system, and this is why it is a sufficient description of one’s state-of-
knowledge for many purposes.

In the absence of measurements the evolution of ρ is very simple. This evolution
is simply given by evolving each of its component states. The evolution of a quan-
tum state is given by applying to it a unitary operator: |ψ(t)〉 = U |ψ(0)〉. So the
evolution of ρ is

ρ(t) =
∑

m

pm|φm(t)〉〈φm(t)| =
∑

m

pmU |φm(0)〉〈φm(0)|U †

= Uρ(0)U †. (1.21)

The “density matrix” ρ is therefore a simple and compact way to describe our state-
of-knowledge of a quantum system. The term density matrix comes from its role as
a quantum equivalent of a probability density for classical systems, and also because
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its diagonal elements constitute a probability distribution. Specifically, if we express
our states in the basis {|j〉}, so that

|φm〉 =
∑

j

cjm|j〉, (1.22)

then the elements of ρ are

ρjk = 〈j|ρ|k〉 =
∑

m

pmcjmc∗km. (1.23)

So the jth diagonal element of ρ is

ρjj = 〈j|ρ|j〉 =
∑

m

pm|cjm|2. (1.24)

Since |cjm|2 is the (conditional) probability of finding the system in the state |j〉
given that it is initially in the state |φm〉, ρjj is the total probability of finding the
system in the state |j〉.

If the density matrix consists of only a single state, so that ρ = |ψ〉〈ψ|, then it
is described as being pure. If it consists of a sum over more than one state, then it
is described as being mixed, and the system is said to be in a statistical mixture, or
simply mixture, of states. As an example, if the system is in the pure state

ρ = |ψ〉〈ψ| =
∑

jk

cjmc∗km|j〉〈k| (1.25)

is it said to be in a superposition of the basis states |j〉. If it is in the state

ρ =
∑

j

pj |j〉〈j|, (1.26)

then it is said to be in a mixture of the basis states |j〉. In the latter case, we can
think of the system as really being in one of the basis states, and the density matrix
merely describes the fact that we do not know which one (although some may be
more likely than others). On the other hand, if the system is in a superposition of
two states, then we cannot describe the system as really being in one state or the
other, and we discuss this further in the next section.

The density matrix is said to be completely mixed if it is equal to I/N , where
N is the dimensional of the system. If this is the case, then each of it eigenstates
are equally likely. Further, every state in the Hilbert space is equally likely, since
〈ψ|(I/N)|ψ〉 = 1/N for every state |ψ〉. In this case we have no information about
the system.

It is not difficult to show that the density matrix is Hermitian (ρ = ρ†), and has
unit trace (Tr[ρ] = 1). Since the density matrix is Hermitian it has a complete set
of eigenvectors (eigenstates), and can always be diagonalized (that is, written in the
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basis of its eigenstates so that it is diagonal). If the eigenvalues are λj , j = 1, . . . , N ,
and the corresponding eigenvectors are |λj〉, the density matrix is

ρ =
∑

j

λj |λj〉〈λj |. (1.27)

So a system is never in a superposition of the eigenstates of the density matrix — it
is either in a mixture of the eigenstates, or in a single eigenstate, in which case the
density matrix is pure. Note that the eigenvalues are the probabilities of finding the
system in the corresponding eigenstates.

The difference between a superposition and a mixture

In case the physical distinction between a mixture of two or more quantum states,
and a superposition of those states is not yet clear to you from you physics training
to date, we pause here to explain this. A mixture of two states describes a situation
in which a system really is in one of these two states, and we merely do not know
which state it is. On the contrary, when a system is in a superposition of two states, it
is definitely not in either of these states. The truth of this statement, while somewhat
incredible, is easy to show. Consider the famous double-slit experiment, in which
an electron is fired towards a metal sheet with two slits in it. The slits are very close
to each other, and the electron is fired at the sheet so that it has a high probability
of passing through the slits and thus reaching the other side. After the electron has
passed through the slits, it is then detected on a screen some distance the metal
sheet. Consider what happens if one slit is blocked-up. The electron passes through
the open slit, and is detected on the screen. If the state of the electron after passing
through the slit and reaching the screen is |ψ1〉, then the probability density that
the electron is detected on the screen at position x is P1(x) = |〈ψ1|x〉|2, where
|x〉 denotes the state in which the electron is on the screen at position x. Similarly,
if the state of the electron after having passed through the other slit is |ψ2〉, then
the probability distribution for the electron to land on the screen at position x is
P2(x) = |〈ψ2|x〉|2.

Now we open both slits and fire the electron through them. If the electron really
goes through one slit or the other, then we can immediately determine the probability
distribution for the electron on the screen. Each electron that goes through the slits
can be assigned as having gone through slit 1 or slit 2. Those going through slit one
have probability distribution P1(x), and those going through slit 2 have distribution
P2(x). If half of the electrons go through each slit (actually, some of the electrons
will not pas through the slits, and instead scatter back from the metal sheet, but we
ignore those) then the distribution of electrons on the screen will be

P (x) =
1
2
P1(x) +

1
2
P1(x). (1.28)

This is the probability distribution we get if we assume that after going through the
slits, the electron is in a mixture of states |ψ1〉 and |ψ2〉. In this case the state of



1.2. QUANTUM MEASUREMENT THEORY 21

the electron when it reaches the screen is ρ = (1/2)(|ψ1〉〈ψ1| + |ψ2〉〈ψ2|), and the
probability distribution for being in state |x〉 is

Pmix(x) = Tr[|x〉〈x|ρ] =
1
2
P1(x) +

1
2
P1(x) = P (x). (1.29)

However, after the electron passes through the slits, it is not in a mixture of states
1 and 2, but the instead in the superposition |ψ〉 = (|ψ1〉 + |ψ2〉)/

√
2. Because of

this the probability density for being in state |x〉 is

Psup(x) = |〈ψ|x〉|2 =
1
2
P1(x) +

1
2
P1(x) + Re[〈x|ψ1〉〈ψ2|x〉]

*= P (x). (1.30)

Since Psup(x) is not equal to P (x), and P (x) is a necessary result of the electron
really being in state |ψ1〉 or |ψ2〉, a superposition cannot correspond to the electron
really being in either of these two states. For want of better terminology, one usually
refers to a system that is in a superposition of two states as being in both states at
once, since this seems more reasonable than saying that it is in neither.

A useful theorem: the most likely state

The following theorem answers the question, what is the most likely pure state of a
system for a given density matrix ρ? Note that the probability of finding the system
in state |ψ〉 is given by

P (|ψ〉) = 〈ψ|ρ|ψ〉 = Tr[|ψ〉〈ψ|ρ]. (1.31)

Theorem 1. If the state of a quantum system is ρ, then the most likely pure state is
the eigenstate of ρ with the largest eigenvalue. This eigenvalue is the probability that
the system will be found in that state.

Proof. We need to find the state |ψ〉 that maximizes 〈ψ|ρ|ψ〉. Let us denote the
eigenbasis of ρ as {|λn〉}. Writing the density matrix in terms of its eigenbasis
(Eq.(1.27)), and writing |ψ〉 =

∑
n cn|λn〉, we have

〈ψ|ρ|ψ〉 =
∑

n

|cn|2λn. (1.32)

Since
∑

n |cn|2 = 1, the above expression is the average of the eigenvalues over the
probability distribution given by pn = |cn|2. Thus to maximize it we must place all
of the probability on the largest eigenvalue. If we denote this eigenvalue by λj , then
this means that |cn|2 = δnj , and therefore |ψ〉 = |λj〉.

A density matrix consists of a set of states, {|ψn〉}, in which each state has an as-
sociated probability, pn. Such a set of states and probabilities is called an ensemble.
In fact, there is no reason why every state in an ensemble must be a pure state – a set
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of states {ρn} with associated probabilities {pn} is also an ensemble, and generates
a density matrix ρ =

∑
n pnρn. If an ensemble contains only pure states, then it is

called a pure-state ensemble. We will often write an ensemble for the set of states
{ρn}, with associated probabilities {pn}, as {ρn, pn}.

Since every pure-state ensemble corresponds to some density matrix, a natural
question to ask is, for a given density matrix, can one determine all the possible
pure-state ensembles that correspond to it. It turns out that not only is the answer
yes, but the collection of ensembles can be characterized very simply. We leave these
facts to Chapter 2, however, because one of the characterizations uses the concept
of majorization. This is a very simple concept which captures the intuitive notion of
uncertainty, and will be defined in the next chapter.

1.2.3 Quantum measurements

In section 1.2.1 we introduced the measurement postulate, and defined the concept
of a von Neumann measurement. Given a state-of-knowledge, ρ, we can describe a
von Neumann measurement of the system in the following way. Given a basis {|n〉},
we define the set of projection operators

Pn ≡ |n〉〈n|, (1.33)

that project any initial state onto one of the basis states. After the measurement we
will find the system to be in the state |m〉 with probability

pm = 〈m|ρ|m〉 = Tr [PmρPm] = Tr
[
(Pm)2ρ

]
, (1.34)

where we have used the cyclic property of the trace: Tr[ABC] = Tr[CAB] =
Tr[BCA]. The state after the measurement can be written as

ρ̃m = |m〉〈m| = PmρPm

Tr [PmρPm]
=

PmρPm

pm
. (1.35)

We include the tilde on top of ρm to indicate that it is a state that results from a mea-
surement. This convention will help to make our expressions clearer later on. The
reason why we choose to write the expression for the final state using the projectors
Pn is not, in fact, important at this point. It will, however, serve to make it clear in
what follows that von Neumann measurements are a special case of the more general
measurements that we will derive below.

Von Neumann measurements are certainly not the only kinds of measurements one
can make on a quantum system, but fortunately we can derive all other measurements
from them. To do this we consider a quantum system we wish to measure, which
we will call the target, and a second system we will call the probe. The probe
is prepared in some state independently of the target, and then the two system are
allowed to interact. After the interaction we perform a von Neumann measurement
on the probe. As a result of the interaction, the probe is correlated with the target,
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and so the measurement on the probe provides us with information about the target.
This procedure gives us the most general kind of measurement we can perform on a
quantum system.

We will denote the basis in which we will measure the probe system as {|n〉},
n = 0, . . . , N − 1, and since the interaction between the systems may be anything,
we can start the probe in the state |0〉 without any loss of generality. The initial state
of the target and probe is therefore

ρcomb = |0〉〈0|⊗ ρ, (1.36)

where ρ is the initial state of the target. We will always write the state of the probe
on the left hand side of the tensor product, and that of the target on the right. To
understand the following it is essential to be familiar with how a composite quan-
tum system, consisting of two subsystems, is described by the tensor product of the
spaces of these two subsystems. If you are not familiar with how to combine two
quantum systems using the tensor product, denoted by “⊗”, the details are presented
in Appendix A.

The form of the target/probe interaction operator

The interaction between the target and probe is described by some unitary operator
U , that acts in the space of both systems. The subsequent von Neumann measure-
ment on the probe is described by a projection onto one of the probe states |n〉,
followed by a normalization. In analyzing the measurement process, it will make
things clearest if we first know some things about the structure of U . (This is actu-
ally the hardest part conceptually — the rest is very straightforward. This section is,
in fact, also quite easy to understood if you write U explicitly as a matrix containing
sub-blocks, as you go along.)

Since U acts in the tensor-product space, it can be written as the matrix

U =
∑

nn′kk′

unk,n′k′ |n〉|sk〉〈n′|〈s′k|, (1.37)

where |sk〉 are a set of basis states for the target, and unk,n′k′ are the matrix elements
of U . For each pair of probe states |n〉 and |n′〉, there is a sub-block of U that acts in
the space of the target. We can alternatively write U in terms of these sub-blocks as

U =
∑

nn′

Ann′ ⊗ |n〉〈n′|, (1.38)

where the operators Ann′ are given by

Ann′ =
∑

kk′

unk,n′k′ |sk〉〈s′k|. (1.39)

We will also denote the sub-blocks An0 simply as An. These constitute the first
column of sub-blocks of U . Because U is unitary, U †U = I . This means that each
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of the diagonal sub-block of U †U that act on the target must be the identity operator
on the target space. Considering the diagonal sub-block corresponding to the probe
matrix element |0〉〈0|, and using Eq.(1.38), this means that

I = 〈0|UU †|0〉 =
∑

n

A†nAn. (1.40)

The final important fact about the structure of U is that, apart from the restriction
given by Eq.(1.40), we can choose the sub-blocks An ≡ A0n to be any set of opera-
tors. This is because the relation given by Eq.(1.40) is alone sufficient to ensure that
there exists a unitary U with the operators An as its first column of sub-blocks. To
see why this is true, note that the operators An, being the first column of sub-blocks,
constitute the first M columns of U , where M is the dimension of the target. To
show that Eq.(1.40) ensures that U is unitary, we need merely show that Eq.(1.40)
implies that these first M columns are mutually orthonormal. So long as this is the
case, we can always choose the remaining columns of U so that all the columns of
U form an orthonormal basis, making U unitary. This task is not especially difficult,
and we leave it as an exercise.

Using a probe system to make a measurement

We now apply the unitary interaction U to the initial state of the two systems, and
then project the probe system onto state |n〉. The final state of the combined system
is then

σ̌ = (|n〉〈n|⊗ I)U(|0〉〈0|⊗ ρ)U †(|n〉〈n|⊗ I). (1.41)

We have placed a caron (ˇ) over the final state, σ, to indicate that it is not necessarily
normalized, due to fact that we have projected the system onto a subspace. Writing
U in terms of its sub-blocks, we immediately obtain a simple form for the final state:

σ̌ = |n〉〈n|⊗AnρA†n. (1.42)

The final state of the target is therefore

ρ̃n =
AnρA†n

Tr[A†nAnρ]
, (1.43)

where we have normalized it by dividing by its trace.
Now that we have a simple form for the final state for each outcome n, we need

to know the probability, pn, that we get each of these outcomes. This is given by
the probability of finding the probe in state |n〉 after the interaction U , and this is
in turn the sum of all the diagonal elements of the density matrix that correspond
to the probe being in state |n〉. The density matrix after the interaction is given by
ρU = U(|0〉〈0| ⊗ ρ)U †. The sum of its diagonal elements that correspond to the
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probe state |n〉 is therefore

pn = Tr[ (|n〉〈n|⊗ I)ρU (|n〉〈n|⊗ I) ]
= Tr[ (|n〉〈n|⊗ I) U(|0〉〈0|⊗ ρ)U † (|n〉〈n|⊗ I) ]
= Tr[σ̌]
= Tr[|n〉〈n|⊗AnρA†n]
= Tr[|n〉〈n|] Tr[AnρA†n]
= Tr[A†nAnρ]. (1.44)

We now have a complete description of what happens to a quantum system under
a general measurement process. Further, we know that every set of operators {An}
that satisfies Eq.(1.40) describes a measurement that can be realized by using an
interaction with a probe system. For emphasis we state this result as a theorem.

Theorem 2. The fundamental theorem of quantum measurement: Every set of
operators {An}, n = 1, . . . , N , that satisfy

∑
n A†nAn = I , describes a possible

measurement on a quantum system via the relations

ρ̃n =
AnρA†n

pn
, (1.45)

pn = Tr[A†nAnρ], (1.46)

where ρ is the state of the system before the measurement, ρ̃n is the state of the
system upon obtaining measurement result n, and pn is the probability of obtaining
result n.

For a given measurement, we will refer to the corresponding operators {An} as the
measurement operators for the measurement. Now we have a simple mathematical
description for general quantum measurements, but we don’t yet know the physical
meaning of the operators {An}. That is, we don’t know how the form of a particular
operator An corresponds to the physical properties of the measurement. We will
explain this in section 1.3, but before we do, we discuss a couple of related topics.

Discarding a subsystem

Let us say we have a quantum system S that is initially in a state ρ. It then interacts
with a second system B over which we have no control, and to which we have no
access. What is our state-of-kowledge of the first system after the interaction? One
way to answer this question is to realize that another observer could measure the
second system, just as we measured the probe in the scenario above. Since we do not
know the outcome of the measurement, our state-of-knowledge is given by averaging
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over all the outcomes. It is therefore

ρ̃ =
∑

n

pnρ̃n =
∑

n

AnρA†n

=
∑

n

〈n|U(|0〉〈0|⊗ ρ)U †|n〉

≡ TrB[U(|0〉〈0|⊗ ρ)U †] (1.47)

So our state-of-knowledge after the interaction is given by the partial trace over
the second system. In fact, the partial trace is completely independent of the mea-
surement that the observer makes on the second system. Of course, this is crucial,
because we cannot know what measurement the observer will make, so our state-of-
knowledge must be independent of this measurement. The definition of the partial
trace, and its invariance under operations on the traced system, are described in Ap-
pendix A.

Positive-Operator Valued Measures (POVM’s)

General measurements on quantum systems are often referred to in the literature as
“positive-operator valued measures”. While the usefulness of this term is unclear,
and should probably be replaced simply with “quantum measurement”, its origin is
as follows. A measure is a map that associates a number with all subsets of a given
set. A positive-operator valued measure is thus a map that associates a positive
operator with every subset. For the purposes of quantum measurements, the set in
question is the set of outcomes of the measurement. Let us label the outcomes by n.
If we pick some subset of the outcomes, call it M, then the probability that we get
an outcome from this subset is given by

Prob(n ∈M) =
∑

n∈M
pn =

∑

n∈M
Tr[A†nAnρ] = Tr

[(
∑

n∈M
A†nAn

)
ρ

]
. (1.48)

Since the operators A†nAn are all positive, the operator in the parentheses is also
positive. This is the positive operator associated with the set M, and is thus the
positive operator of the “positive-operator valued measure”.

1.3 Understanding Quantum Measurements

1.3.1 Relationship to classical measurements

While we have shown that a general measurement on a quantum system is described
by a set of operators {An}, we do not yet understand how the form of these operators
relates to the nature of a given measurement. We can gain such an understanding by
examining various key forms that the An can take, and the measurements to which
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they correspond. It is most informative to begin by examining under what conditions
quantum measurements reduce to classical measurements.

Consider a state-of-knowlegde that is diagonal in the basis {|n〉}, so that

ρ =
∑

n

pn|n〉〈n|. (1.49)

Note that in this case the system is not in a superposition of the basis states. It
actually is in one of the basis states, we merely do not know which one. Recall
that we refer to this situation by saying that the system is in a statistical mixture (or
simply a mixture) of the states {|n〉}. Now, if we make a measurement on the system
purely to obtain information about the basis state it is in, then we might expect this
to be described perfectly well by a classical measurement. This is because the basis
states are distinguishable, just like classical states, and our state-of-knowledge is a
probability distribution over these states, just like a classical state of knowledge.

With the above thoughts in mind, consider a quantum measurement in which all
the measurement operators Aj are diagonal in the same basis as the density matrix.
Note that we can think of the diagonal elements of the measurement operators, and
of ρ, simply as functions of the index n. That is, we can write

ρ =
∑

n

P (n)|n〉〈n|, (1.50)

Aj =
∑

n

A(j, n)|n〉〈n|, (1.51)

where P (n) and A(j, n) are the functions in question. The final (or posterior) state-
of-knowledge that results from our measurement is

ρ̃j =
AjρA†j

Tr[A†jAjρ]
=

∑
n A2(j, n)P (n)|n〉〈n|

N . (1.52)

This is precisely the same form as the update rule for classical measurement theory.
All we have to do is write the posterior state ρ̃j as

ρ̃j =
∑

n

P (n|j)|n〉〈n|, (1.53)

and identify A2(j, n) as the likelihood function, P (j|n), and we have

P (n|j) =
P (j|n)P (n)

N . (1.54)

So, at least in this case, quantum measurements are merely classical measurements,
and the diagonal of the measurement operator Aj corresponds to the square-root of
the likelihood function evaluated for the jth outcome.
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Two operators A and B are diagonal in the same basis if and only if they commute
with one another. In view of the above results, we will refer to quantum measure-
ments for which

[Aj , Ak] = [Aj , ρ] = 0, ∀j, k (1.55)

as semi-classical measurements, since they are completely equivalent to their classi-
cal counterparts. (We would prefer to call them simply classical measurements, but
refrain from this to avoid confusion.)

We will see in section 1.3.3 that we can, in fact, understand the action of all quan-
tum measurements, to a large extent, in terms of Bayesian inference.

1.3.2 Incomplete measurements and Bayesian inference

As an example we consider a simple semi-classical measurement that provides only
partial information about the final state. Such measurements have measurement op-
erators that are not projectors onto a single state, and are referred to variously as
“incomplete” measurements [11], “finite-strength” measurements [12], or “weak”
measurements [13].

Consider a two-state system in the state

ρ = p0|0〉〈0|+ p1|1〉〈1|, (1.56)

and a measurement with two possible outcomes, described by the operators

A0 =
√

κ|0〉〈0|+
√

1− κ|1〉〈1|, (1.57)
A1 =

√
1− κ|0〉〈0|+

√
κ|1〉〈1|. (1.58)

If κ = 1 (or κ = 0) then both measurement operators are projectors, and after the
measurement we are therefore certain about the state of the system. If κ = 1/2
then both operators are the identity. They therefore have no action on the system,
and we learn nothing from the measurement. For κ ∈ (1/2, 1) the measurement is
an “incomplete” measurement. It changes the probabilities p0 and p1, but does not
reduce either to zero.

As discussed in the previous section, since the measurement operators commute
with the density matrix, their action on the diagonal elements of the density matrix
is simply that of Bayesian inference. The measurement operators we have chosen
above correspond precisely to the simple two-outcome measurement that we dis-
cussed in section 1.1.1, with the identification α = κ. So for example, if κ > 1/2
and we get the outcome 0, then the diagonal elements of ρ are re-weighted so as
to make the state |0〉 more likely than it was before. Finite-strength measurements
thus provide some information about which state the system is in, but not complete
information.
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1.3.3 The polar decomposition: bare measurements and feedback

The polar decomposition theorem states that any operator A may be written as the
product of a positive operator, P , and a unitary operator U [14, 15]. (The unitary
operator may be on the right or the left of the positive operator.) Positive operators
have a complete set of eigenvalues, and all their eigenvalues are greater than or equal
to zero (the density matrix is thus a positive operator). As a result P = P†. When a
unitary operator, U , is applied to the density matrix ρ via UρU †, it gives a possible
time evolution for the system. In doing so it does not change the eigenvalues of the
density matrix, but only the eigenvectors. This means that it does not change the
amount of our uncertainty about a system, just where in the state space it is most
likely to be. The eigenvalues of a unitary matrix are in general, complex but have
unit norm, and U †U = UU † = I . As we will see, the polar decomposition theorem
provides tremendous insight into the structure of quantum measurements.

To apply the polar decomposition theorem to a quantum measurement described
by a set of operators {An}, we write each of these operators as An = UnPn. With
this replacement the probability of obtaining the nth result becomes

pn = Tr[(Pn)2ρ], (1.59)

and the final state can be written as

ρ̃n = Un

(
PnρPn

pn

)
U †n. (1.60)

The requirement upon the operators An = UnPn for them to represent a measure-
ment becomes ∑

n

A†nAn =
∑

n

(Pn)2 = I. (1.61)

This representation of a quantum measurement has a number of important ramifica-
tions. First note that since the unitary operators Un do not change the eigenvalues of
the density matrix, they play no role in describing the information extraction by the
measurement. The information gathering properties of the measurement are com-
pletely captured by the positive operators Pn.

The unitary operators Un are not constrained in any way. Note further that the
form of Eq.(1.60) is exactly the same form we would obtain if we made a measure-
ment described by the positive operators {Pn}, and applied forces to the system to
generate the evolution Un upon getting the nth result. Applying forces to a system
conditional upon the result of a measurement is often referred to as feedback, and is
the basis of the subject of feedback control.

The polar decomposition shows us that to understand the process of information
gathering in any quantum measurement, we need only examine the action of positive
operators on quantum states. We will see shortly that this allows us to understand
much of the action of quantum measurements in terms of Bayesian inference. Before
we examine positive operators in more detail, it is worth making a closer connection
between the structures of quantum and classical measurement theory.
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The parallel structure of classical and quantum measurements

As introduced in section 1.1, classical measurement theory involves multiplying our
initial probability distribution by the likelihood function (and normalizing) to obtain
our final state-of-knowledge. The reason that we do not include any other action
on the system is because classical measurements need not disturb the system at all.
A classical system really is in one of its possible states n, and the only thing that
changes during a measurement is our state-of-knowledge regarding the system. Of
course, we could if we wanted include the effects of forces applied to the system
dependent upon the result of the measurement.

In general the evolution of a classical system is given by a simplectic operator
acting on a state in the system’s phase-space. But for our purposes here we can think
of our classical system as having a discrete set of states. A six-sided die, for example,
where the state is the number that is face-up. We can represent the states of this
system (the die) as the elementary basis vectors of a six-dimensional vector space.
With this representation, the difference between a quantum and classical system is
that the former can be in any superposition of the basis states, whereas the latter can
only be in one of the basis states. With this representation for a classical system we
can use the formalism of quantum measurement theory: our state-of-knoweldge is
given by a density matrix that is diagonal in the basis defining the classical states,
and all our measurement operators (the likelihood function) are also diagonal in this
basis. With this representation, the only actions we can perform on our classical
system are permutations of the classical states. Permutations of the basis vectors are
given by applying permutation matrices. These are unitrary matrices whose elements
are either 0 or 1, and each row and column contains exactly one 1.

Defining {Tn} to be a set of permutation matrices, then a classical measurement
followed by a deterministic action on the system is given by

ρ̃n = Tn

(
PnρPn

pn

)
T †n. (1.62)

where [Pn,Pm] = 0, ∀n, m. This exactly parallels a quantum measurement. This
suggests that for quantum measurements one can view the positive operators as tak-
ing the place of the likelihood functions of classical measurement theory. The unitary
part of the operators that describe quantum measurements play the role of the permu-
tation matrices (or symplectic evolutions) in the classical theory (and for this reason
are not usually included in the classical theory). When we consider the subject of
information in the next chapter, we will see that there are further reasons to view the
positive operators as describing the quantum analogue of classical measurements.

The action of bare measurements

Since it is the positive operators that characterize the information extraction in a
quantum measurement process, we will refer to quantum measurements that are de-
scribed purely by a set of positive operators, {Pn}, as bare measurements. This
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name is intended to indicate that there is a sense in which they capture the notion of
information extraction without additional actions1.

Now let us examine the action of bare measurements (positive operators) on a
quantum system. First recall that while a semi-classical measurement changes our
state-of-knowlegde of a quantum system, it need not change the underlying state-
vector. To see this, consider a semi-classical von Nuemann measurement. This is
a von Neumann measurement that projects the system onto the basis in which the
density matrix is diagonal. If the density matrix is diagonal in the basis {|n〉}, then
the system could really be in one of the basis states. If this is the case, the action
of the von Neumann measurement is merely to select the basis state that the system
is already in. In this case it does not change the state of the system, merely our
information about it.

Contrary to the behavior of classical measurements, however, von Neumann mea-
surements, and thus bare measurements in general, can change the state of a system.
If we prepare a system in a pure state that is not one of the basis states onto which
a von Neumann measurement projects, then the measurement necessarily changes
the state of the system. More generally, a positive operator will change the state of
a system whenever the operator does not commute with the density matrix. Never-
theless, the action of a positive operator on a quantum system can be understood in
quite simple terms. To do this we go to the basis in which the positive operator, P
is diagonal. Let us call this the P basis. In general the density operator will not be
diagonal in this basis. Recall that even so, the diagonal elements of ρ do still give the
probability distribution over the P basis states. Now, if we examine the action of P
on the diagonal elements of ρ in the P basis, we find that this is exactly the same it
would be if ρ were diagonal in this basis. That is, as far as the measurement is con-
cerned, the action of P on ρ is precisely to apply Bayes’ theorem to the distribution
over the P basis. (In doing so the action of P also changes the off-diagonal elements
of ρ, re-weighting them in a manner which is consistent with the way it re-weights
the diagonal elements.)

We see from the above discussion that we can think of each of the positive opera-
tors, Pn, of a bare measurement as extracting information about the basis in which
they are diagonal (their eigenbases). The difference between a bare quantum mea-
surement and a classical measurement is that the operators of a bare measurement
may each extract information about a different basis.

Summary

The polar decomposition theorem shows that the measurement operators describing
a given measurement can be factored into the product of a positive operator and a

1We note that “bare” measurements have also been referred to in the literature as “minimally dis-
turbing” measurements [16, 17]. While these two terms are similar in spirit, we prefer the latter for
two reasons. The first is that whether or not bare measurements are minimally disturbing does depend
on ones definition of disturbance. (Three useful notions of disturbance are discussed in section 2.3.2.)
The second is its brevity.
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unitary operator. It is the positive operators that describe the information extraction.
Since the unitary operators describe the application of forces to a system, and since
in general they will depend upon the outcome of the measurement, they can be inter-
preted as a feedback process. Consequently we can think of the polar decomposition
theorem as providing an interpretation of all measurements, and thus all quantum
evolutions, as a combination of information extraction and feedback.

Since the action of positive operators are identical to classical measurements when
the density operator is diagonal in their eigenbasis, one can regard them as describing
information extraction without additional actions. That is, the effect on the quantum
state due to a positive measurement operator can be regarded, if one wishes, as only
that which is a direct result of information extraction, and nothing more.

1.4 Describing Measurements within Unitary Evolution

Measurement does introduce an extra feature into quantum mechanics, over and
above the unitary (and thus reversible) evolution given by Schrödinger’s equation.
However, it is very important to realize that one can treat measurements, as well
as the actions that an observer performs on a system as a result of those measure-
ments, entirely using unitary evolution (well, almost entirely). This is important for
at least two reasons. It provides a simple way to understand how measurement pro-
cesses fit into thermodynamics and the second law (Chapter 4), and it allows us to
make a direct connection between different ways of implementing feedback control
in quantum systems (Chapter 6).

Once an observer has made a measurement, she can apply forces to the system that
depend on the result of the measurement. So to describe measurement we need to be
able to describe an arbitrary sequence of measurements, where each measurement
is followed by a unitary operation on the system that depends upon (is “conditional
on”) the measurement result. Our analysis of measurements in terms of a probe
system in Sec. 1.2.3 already provides the tools to do this using unitary evolution, as
we now show.

Consider making a general measurement with a probe system. The result of the
measurement is given by projecting the probe system onto one of a set of orthogo-
nal states. This means that we can determine the result of the measurement just by
looking at what has happened in each of a set of mutually orthogonal subspaces that
correspond the mutually orthogonal states of the probe. To apply a unitary opera-
tion based on each measurement result, we do not actually need to project the probe
system onto these orthogonal subspaces. Instead, we could design the interaction
Hamiltonian so that its action on the system depends on the subspace of the probe.
In fact, this conditional action is already incorporated into the interaction operator
U that creates the measurement: by choosing U appropriately, we can choose each
measurement operator An, and in particular we can choose the An to include the
desired conditional unitary action on the system. Thus our construction of a mea-
surement using a probe already contains both measurement and actions performed
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as a result of that measurement, without performing any projection of the probe.
Note that there is also no need for the subspaces be one-dimensional: we can al-
ways choose U so that each measurement result corresponds to an arbitrarily large
subspace of the probe.

If we want to make a sequence of measurements, along actions based on the result
of each measurement, then we could use a sequence of probe systems, each one in-
teracting with the system. Alternatively, we could swap the state of the probe system
with a third “auxiliary” system, prepared in state |0〉. This can be done with a unitary
transformation acting in the space of the probe and the third system. It prepares the
probe in state |0〉, and stores the measurement result (the subspaces corresponding
to the different outcomes of the measurement) in the third system. The probe is then
ready to make another measurement on the system. In this way multiple measure-
ments can be made on the system, the results of each measurement being stored in
a new auxiliary system. The whole process is purely unitary evolution in the space
of the system, the probe, and the auxiliary systems. Note that we could also make
the choice of subsequent measurements conditional on the results of previous mea-
surements. We can do this by having the subsequent measurements implemented
by unitary interactions that use only the subspace of the probe that corresponds to
previous measurement results.

The only time we need to invoke an explicit projection (a “real” measurement)
is if we want to specify that only one sequence of measurement results “actually”
occurred. In that case, we perform one final projection onto the subspaces of the set
of auxiliary systems, and that gives us the final state of the system that results from
that specific sequence of results. But note that the unitary procedure actually contains
all the information about the behavior of the system under every possible sequence
of measurement results. This information is contained within a set of orthogonal
subspaces, defined by the (mutually orthogonal) states of the auxiliary systems.

A special case of the above procedure is when the conditional actions on the sys-
tem are designed so as to prepare the system in the same final state, regardless of
the outcomes of the measurement. This is possible because the conditional unitary
evolutions can map the states that result from each measurement, to a predetermined
final state, so long as all these states are pure (or if their density matrices all have
the same set of eigenvalues). In this case the final state of the system does not de-
pend on the subspaces of the probe or auxiliary systems, and is thus fully determined
without any projections. Thus in this case the entire sequence of measurements and
conditional operations is fully described without projections.

In the procedure described above for realizing a sequence of generalized measure-
ments, we assumed that we could turn off and on the required unitary evolutions
between the various subsystems. This would appear to require the action of an ad-
ditional external system. In fact, the use of unitary evolutions that are switched off
and on was purely a conceptual tool. No such external system is required, because
the whole sequence of measurements can be performed with a single unitary, gen-
erated by a single time-independent Hamiltonian. This can be seen by noting that
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the sequence of unitary evolutions that are switched off and on, produce at the final
time one unitary map from the initial to final state of the whole system. Thus the
whole evolution can be described by a single unitary generated by a single Hamil-
tonian. Another way to see that the whole process can be performed with a single
unitary is that a sequence of generalized measurements is equivalent to a single gen-
eralized measurement, where the latter has a single outcome corresponding to every
possible sequence of measurement results. This single generalized measurement can
therefore be implemented with a single probe and a single unitary U .

1.5 Inefficient Measurements

Inefficient measurements are defined as measurements in which the observer does
not have access to all the information regarding the measurement results. We can de-
scribe this situation by labeling the measurement operators with two indices: {Ajk}.
We give the observer access to the value of j, but not the value of k. Thus the
observers final state-of-knoweldge is given by averaging over the index k, and is

ρ̃ =
∑

k

P (k|j)ρ̃jk =
∑

k

P (j, k)
P (j)

ρ̃jk =
1

P (j)

∑

k

AjkρA†jk. (1.63)

where

ρ̃jk =
AjkρA†jk
P (j, k)

, (1.64)

and P (j, k) = Tr[A†jkAjkρ].
Of course, the most general situation is when we have just a single index for

the measurement result, n, and the observer has some general classical state-of-
knowledge regarding this result. We can describe this situation by saying that the
observer makes a classical measurement of n, and get result m, where this classi-
cal measurement is described by the likelihood function P (m|n). The formulation
above, while appearing to be simpler, actually covers this most general scenario. To
see this note that in this general case the observers final state state-of-knowledge is
given by

ρ̃ =
∑

n

P (n|m)ρ̃n =
∑

n

P (m|n)P (n)
P (m)

ρ̃n

=
1

P (m)

∑

n

P (m|n)BnρB†n, (1.65)

where the measurement operators are {Bn}. Now we observe that we can obtain this
result using the two-index formulation above by setting m = j, n = k, and

Amn =
√

P (m|n)Bn. (1.66)
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A probe system can be used to implement inefficient measurements by choosing
the initial state of the probe to be mixed. Alternatively one can simply introduce a
randomization process (a classical noise process) between the measurement result
and the data actually obtained by the observer.

1.6 Measurements on Ensembles of States

It is sometimes useful to know not only the density matrix for a system, but also the
full set of possible pure states that the system might be in, along with their respec-
tive probabilities. This may be important if we know that someone has prepared the
system in on of a specific set of states, and we wish to make a measurement to deter-
mine which one. A set of states {|ψj〉}, along with their corresponding probabilities,
{P (j)}, is referred to as an ensemble, and we will often write is as {|ψj〉P (j)}. Of
course, there is no reason why an ensemble need contain only pure state, and so in
general we will write our ensembles as {ρj , P (j)}. So far we have examined how
the action of a measurement changes ρ, but it is also useful to know how it changes
an ensemble.

If the initial ensemble is {ρj , P (j)}, then the density matrix is

ρ =
∑

j

P (j)ρj . (1.67)

If we now make a measurement described by the measurement operators {An}, and
obtain the outcome n, then the final state is

ρ̃n =
An

∑
j P (j)ρjA

†
n

N

=
1
N

∑

j

P (j)Tr[A†nAnρj ]

(
AnρjA

†
n

Tr[A†nAnρj ]

)
(1.68)

Now let us examine the various elements in the above expression. The quantum state
in the final parentheses is correctly normalized. It is the state the system would be
in following the measurement if the system had initially been in the state |ψn〉. We
shall therefore denote it by ρ̃j,n, meaning the state of the system given the values of
both n and j.

The quantity Tr[A†nAnρj ] is the probability that we obtain result n, if the system is
initially in the jth state, so we can write this as the likelihood function P (n|j). With
these definitions the final state is now

ρ̃n =
∑

n

[
P (n|j)P (j)

N

]
ρ̃j,n. (1.69)

We can also ask, what does the measurement tell us about the state that the system
was in before the measurement. In classical measurement theory these two questions
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are the same, since classical measurements do not change the state of the system.
But for quantum systems the two questions are distinct. Because we know the initial
ensemble, we know that the system was initially in one of the states {|ψn〉}. To
determine what the measurement tells us about the initial preparation all we have
to do is to apply Bayesian inference to our classical state of knowledge regarding
which of the possible states was prepared, being P (n). After the measurement our
state-of-knowledge regarding which state was prepared is thus

P (j|n) =
P (n|j)P (j)

N , (1.70)

and this is also the expression appearing in Eq.(1.69). So we can also write the state
of the system after the measurement as

ρ̃n =
∑

j

P (j|n)ρ̃j,n, (1.71)

which, if you think about it, makes perfect sense.

Summary

An important message of the above discussion is that when we make a measure-
ment on a quantum system, we can consider two distinct kinds of information that
the measurement extracts. The first is information about the final state of the sys-
tem – this concerns how certain we are of the state of if the system following the
measurement. This is the kind of information that is useful when we are trying to
control a system. The second kind of information is information about the initial
state of the system. As we will see in the next chapter (specifically, section 2.3), this
is useful in a scenario in which the quantum system is being used to communicate
information from one person to another. If Alice wishes to send a message to Bob,
then she prepares the system in one of set of states, where each state represents a
possible message, and sends the system to Bob. Bob then makes a measurement on
the system to determine the initial state, and hence the message. In the next chapter
we will learn how both kinds of information can be quantified.

History and Further Reading

Bayes’ theorem, the cornerstone of classical measurement theory, was introduced by
Bayes in 1763 [18]. Further details regarding Bayesian inference and methods for
finding priors are given in Jaynes’ book on probability theory [4]. Many examples of
the application of Bayesian inference can be found in [19]. The formalism describing
general quantum measurements was first developed by Krauss [20]. The polar de-
composition theorem can be found in “Matrix Analysis’ by Horn and Johnson [14],
and “Matrix Analysis” by Rajendra Bhatia [15].
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The problem of finding the optimal measurement to distinguish between the states
of a given ensemble appears to have no analytic solution. A number of properties
of the optimal measurement are known, however, including approximately optimal
measurements. Conditions that the optimal measurement must satisfy were first ob-
tained by Holevo [21] and Yuen et al. [22]. Further details regarding this question
may be found in [23, 24]. The latter gives an overview of the approximately optimal
measurements that are known to date.

Exercises

1. Show that all the eigenvalues of the density matrix are non-negative.

2. Show that Tr[ρ2] depends only on the eigenvalues of ρ.

3. Consider a state-of-knowledge (density matrix) in which every pure-state is
equally likely. Show that in this case the density matrix is proportional the
identity.

4. The polar decomposition theorem states that every operator A can be written
as UP , or QV , where P and Q are positive, and U and V are unitary. Show
that P =

√
A†A and Q =

√
AA†.

5. Show that if a matrix A has a complete set of orthogonal eigenvectors (that
is, A is diagonalizable) then A†A = AA†. (Thus, operators that do not sat-
isfy this condition cannot be diagonalized.) In fact, the converse is also true
— every matrix A for which A†A = AA† has a complete set of orthogonal
eigenvectors [14, 25].

6. Consider a measurement that has two outcomes. Show that in this case the
positive operators associated with each of the measurement operators com-
mute with one another.

7. Consider the unitary operator U defined in Eq.(1.38). Show that Eq.(1.40)
implies that the first M columns of U are orthonormal.

8. Consider a two-state system with basis states |0〉 and |1〉. The system is pre-
pared in the state |ψ1〉 = |1〉, or the state |ψ2〉 = (|0〉 + |1〉)/

√
2, with equal

probability. We now make a two-outcome measurement on the system to de-
termine which of the two states it is in. We choose one of the measurement
operators to be the projector P0 = |0〉〈0|. This ensures that, if this outcome
occurs, we can be certain that the initial state was |ψ2〉 (Why?). Determine
the probability that, following the measurement, we will be uncertain of the
initial preparation.

9. Show that any two measurements, performed one after the other, is equivalent
to a single measurement, and determine the measurement operators for the
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single measurement in terms of the first two. The result clearly generalizes for
a sequence of many measurements.

10. Consider an efficient measurement performed on a system in a pure state.
Show that by using feedback (that is, by applying to the system a unitary
operator that depends upon the measurement result), one can prepare the sys-
tem in the same final state for every outcome of the measurement, and this can
be done for any efficient measurement. Is the same true if the initial state is
mixed? If not, why not?

11. Show that if a system is prepared in one of two states that are not orthogonal to
one another, there is no measurement that can guarantee to determine with cer-
tainty which state the system was prepared in. (You can use the construction
involving a probe system, and the fact that unitary evolution does not change
the inner product between two states.)

12. Consider a system prepared in one of two non-orthogonal states, where the
probability of each is 1/2. In this case we can describe the system entirely
using a two-dimensional state-space (why?). Denoting our basis-states as |0〉
and |1〉, we can write the two states as |±〉 = α|0〉 ± eiφ

√
1− α|1〉. To de-

termine which measurement will most accurately determine which of these
two states the system is in, we must quantify what we mean by “most ac-
curate”. In fact, different goals will motivate different definitions, and thus
different optimal measurements. One such optimal measurement, first deter-
mined by Levitin [26], is the following. It has two outcomes, and the cor-
responding measurement operators, A±, are, respectively, the projectors onto
the two states |±〉m = (|0〉 ± eiφ|1〉)/

√
2. Let say that if the outcome is +,

then the observer guesses that the state was |+〉, and vice versa. i) Draw all
the above states on the Bloch sphere. ii) Calculate the probability that the ob-
server’s guess is incorrect (that the observer fails to correctly distinguish the
states). (Note: this measurement maximizes the “mutual information”, to be
discussed in Chapter 2, and does not maximize the probability of a successful
guess. Can you think of how the measurement could be altered to increase the
probability that the observers guess is correct?)

13. A system is prepared in one of the two orthogonal states |0〉 and |1〉, each
with probability 1/2. A measurement is made on the system which has two
outcomes given by the operators A±. These operators project the system onto
the states |±〉 = α|0〉 ±

√
1− α|1〉, respectively. i) Calculate the change in

the observers state-of-knowledge when he gets each of the two outcomes. ii)
Which value of α provides the observer with no information about the initial
state?

14. Find an example of an inefficient measurement that leaves the system in a
completely mixed state, regardless of the initial state.
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15. Consider a two-state system in state |0〉 undergoing evolution given by the
Hamiltonian H = (i/!)µσy. The state of the system as a function of time is
then |ψ(t)〉 = cos(µt)|0〉 + sin(µt)|1〉. An observer now makes a measure-
ment that projects the system either onto state |0〉 or state |1〉. Consider that
the observer makes a measurement after a short time interval t = ∆t . 1/µ.
i) What is the probability that the observer will project the system into state
|1〉? (Hint: expand the sine function as a power series in ∆t, and drop all
terms higher than second-order in ∆t. This will be useful for the next part.)
ii) Now consider what happens if the observer makes repeated measurements,
interrupting the evolution at intervals ∆t apart. What is the probability that
the observer will find the system to be in state |1〉 after N measurements? iii)
Finally, consider an interval T , in which the observer makes N measurements,
each separated by the interval ∆T = T/N . Calculate the probability that the
system is found to be in state |1〉 for every measurement. Now determine this
probability in the limit in which ∆t → 0 (N → ∞). The result is that the
system is never found to be in state |1〉: the evolution of the system is frozen
by the measurement. This is the quantum Zeno effect.

16. The “anti”-quantum Zeno effect (it is best to do exercise 15 first): Consider
a two-state system that starts in state |0〉. After a time ∆t an observer makes
a two-outcome measurement on the system, whose measurement operators
project the system onto the states |+〉 = cos(∆t)|0〉+ sin(∆t)|1〉, and |−〉 =
sin(∆t)|0〉 − cos(∆t)|1〉. Calculate the probability that the system is found
to be in the state |−〉 after the measurement. This result tells you that, to
first-order in ∆t, the system will always be found in state |+〉 after the mea-
surement. The measurement thus “drags” the system from state |0〉 to state
|+〉. This is called the anti-quantum-Zeno effect, and has precisely the same
origin as the Zeno effect (see exercise 15 above).

17. Weak, or incomplete measurements are those that do not project an initially
mixed state only onto pure states — that is, they are measurements whose
measurement operators are not all rank 1, and thus do not provide the observer
with full information about the state of the system following the measurement.
Consider a two-state system that is initially in the state

ρ = p|0〉〈0|+ (1− p)|1〉〈1|. (1.72)

Now consider the two-outcome measurement with projection operators given
by

A+ =
√

k|+〉〈+|+
√

1− k|−〉〈−|, (1.73)
A− =

√
1− k|+〉〈+|+

√
k|−〉〈−|, (1.74)

where

|+〉 =
√

α|0〉+
√

1− α|1〉, (1.75)
|−〉 =

√
1− α|0〉+

√
α|1〉. (1.76)
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The purity of a quantum state ρ is defined as Tr[ρ2]. (This measure of how
pure the quantum state is — loosely how much information we have about
the state of the system — will be discussed in Chapter 2.) i) Write a computer
program in your favorite language (e.g. Matlab) to calculate the increase in the
purity of the state due to the measurement, averaged over the two measurement
outcomes. For fixed values of p and k, what value of α gives the maximum
average increase in the purity? ii) Draw the initial state ρ on the Bloch sphere,
along with the states |+〉 and |−〉 for the measurement that gives the maximum
increase in purity.


