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Measurement Back-Action 
Exploit ing It  &  Avoiding It



Overview
Part 1  Feedback Control via Diffusion Gradients 

i) Dynamics of diffusion gradients 
ii) Controlling a single q-bit

Part 2  Feedback Control of Schrödinger Cats

i) x2 measurements and cat states
ii) Gaussian estimators and control tools 
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Better Together?...



Diffusion Gradients

The steady-state probability density due to spatially varying diffusion  

P (x) =
1

ND(x)



Diffusion Gradients

We can see that diffusion gradients act like deterministic motion 
by calculating the probability current...   



Measurements and Diffusion

Continuously measuring in a basis perpendicular to the 
Bloch vector generates diffusion on the Bloch sphere. 



Control Algorithm

We make the measurement strength k depend on    :

θ

θ

k = κθ2



Performance



Feedback Control with Noise



Steady-State Performance



Feedback Control of Schrödinger-Cats

      To Control Cats via Feedback we need: 
        i.   A measurement that wont destroy them  
         ii.  Feasible ways to track them in real-time

iii.  Ways to control both components
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Feedback Control of Schrödinger-Cats
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Ingredient I: Quadratic Measurements 
A measurement of x2 generates cat-states...  

– Jacobs, Tian, Finn, PRL 102, 057208 (2009)  

(this means that cats preserve their symmetry in x as they evolve) 
So if a cat is symmetric about x = x0  
we can preserve the cat by measuring  (x – x0)2

      To Control Cats via Feedback we need: 
        i.   A measurement that wont destroy them  
         ii.  Feasible ways to track them in real-time

iii.  Ways to control both components



Monitoring X2

So here is what happens...



Require a coupling proportional to  (x – x0)2 

Can obtain this by extending the perturbative technique in 
         – Jacobs & Landahl, PRL 103, 067201 (2009)

Time-independent perturbation theory then gives us  

Quadratic Measurements of  x 

We couple a single qubit perturbatively to the resonator via

   
and tune the free Hamiltonian of the qubit to give  

λσzx

H = ∆σx + λσz(x− a)
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ε = λ/∆where 



Ingredient II: A Gaussian Estimator
The measurement cant tell the difference between a single blob 

and two blobs symmetrically placed about x = a
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Gaussian Estimator



Gaussian Estimator



Ingredient III: Controls

Ideally we would like simple, linear controls to manipulate both 
components of the Schrödinger cat. 

We can do almost that well...

The measurement heats the system, increasing the inter-blob distance. 
We can use the  cooling algorithm  in  Steck et al., PRL 92, 223004 (2004)

to reduce the distance between the blobs. 

Apply a linear Force Change the Frequency ?



Summary

Diffusion gradients induce effective drift in closed spaces 
This can be exploited to control quantum systems

This is surprisingly effective

Feedback Control via Diffusion Gradients 

Feedback Control of Schrödinger Cats

x2 measurements can be used to monitor cats Gaussian 
estimators provide rapid tracking

linear Hamiltonians are sufficient for control


